Panasonic

ARCT1F365E-5

Safety Precautions

Observe the following notices to ensure personal safety or to prevent accidents. To ensure that you use this product correctly, read this User's Manual thoroughly before use. Make sure that you fully understand the product and information on safety. This manual uses two safety flags to indicate different levels of danger.

WARNING

If critical situations that could lead to user's death or serious injury is assumed by mishandling of the product.

-Always take precautions to ensure the overall safety of your system, so that the whole system remains safe in the event of failure of this product or other external factor. -Do not use this product in areas with inflammable gas. It could lead to an explosion.

-Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.

CAUTION

If critical situations that could lead to user's injury or only property damage is assumed by mishandling of the product.

-To prevent excessive exothermic heat or smoke generation, use this product at the values less than the maximum of the characteristics and performance that are assured in these specifications.

-Do not dismantle or remodel the product. It could cause excessive exothermic heat or smoke generation.

-Do not touch the terminal while turning on electricity. It could lead to an electric shock.

-Use the external devices to function the emergency stop and interlock circuit.

-Connect the wires or connectors securely.

The loose connection could cause excessive exothermic heat or smoke generation.

-Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It could cause excessive exothermic heat or smoke generation.

-Do not undertake construction (such as connection and disconnection) while the power supply is on. It could lead to an electric shock.

Copyright / Trademarks

-This manual and its contents are copyrighted.

-You may not copy this manual, in whole or part, without written consent of Panasonic Industrial Devices SUNX Co., Ltd.

-Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

-All other company names and product names are trademarks or registered trademarks of their respective owners.

PLC_ORG

Table of Contents

1. Functions of Unit and Restrictions on Combination	1-1
1.1 Functions of FP Σ Positioning Unit	1-3
1.1.1 Functions of Unit	1-3
1.1.2 Unit Types	1-4
1.1.3 Combination with MINAS Motor	1-4
1.2 Unit Functioning and Operation Overview	1-5
1.2.1 Unit Combinations for Positioning Control	1-5
1.2.2 Basic Operation of FP Σ Positioning Unit	1-6
1.3 Restrictions on Units Combination	1-7
1.3.1 Restrictions on Combinations Based on Current Consumption	1-7
1.3.2 Restrictions on Unit Installation Position	1-7
1.3.3 Restrictions on the Number of Units Installed	1-7
2. Parts and Specifications	2-1
2. Parts and Specifications2.1 Parts and Specifications	
-	2-3
2.1 Parts and Specifications	2-3 2-3
2.1 Parts and Specifications 2.1.1 Parts and Specifications	2-3 2-3 2-4
 2.1 Parts and Specifications 2.1.1 Parts and Specifications 2.1.2 Operation Status Display LEDs 	2-3 2-3 2-4 3-1
 2.1 Parts and Specifications	2-3 2-3 2-4 3-1 3-3
 2.1 Parts and Specifications	2-3 2-3 2-4 3-1 3-3 3-3
 2.1 Parts and Specifications	2-3 2-3 2-4 3-1 3-3 3-3 3-4

3.3	Supplying Power for Internal Circuit Drive	. 3-9
	3.3.1 Line Driver Output Type	. 3-9
	3.3.2 Transistor Output Type	. 3-9
3.4	Connection of Pulse Command Output Signal	3-10
	3.4.1 Line Driver Output type	3-10
	3.4.2 Transistor Output Type	3-10
3.5	Connection of Deviation Counter Clear Output Signal (for servo motor)	3-11
3.6	Connection of Home Input/Near Home Input Signals	3-12
	3.6.1 Connection of Home Input (When connecting to motor driver Z phase output)	3-12
	3.6.2 Connection of Home Input (When connecting to an external switch/sens	
	3.6.3 Connection of Near Home Input Signal	3-13
	3.6.4 Connection of Over limit Input Signal	3-13
	3.6.5 Connection of Positioning control start input(Timing Input) Signal	3-13
3.7	Connection of Pulse Input	3-14
	3.7.1 Line Driver Type	3-14
	3.7.2 Transistor Open Collector Type	3-14
	3.7.3 Transistor - resistor Pull - up Type	3-14
3.8	Precausions on Wiring	3-15

4. Confirming the Unit Settings and Design Contents 4-1

4.1	Pulse Output Mode	4-3
	4.1.1 Selection of Rotation Direction	4-3
	4.1.2 Selection of Pulse Output Mode	4-3
	4.1.3 Setting the Shared Memory Control Code Relationship with Rotation Direction	4-4
4.2	2 Confirming the Slot Number and I/O Number Allocations	4-6
	4.2.1 Slot Number	4-6
	4.2.2 I/O Area Allocation	4-6

	4.2.3 Contents of Input and Output Allocations4	1-7
4.3	Increment and Absolute4	1 -9
	4.3.1 Increment (relative value control)4	1 -9
	4.3.2 Absolute (absolute value control)4-	10
4.4	Selection of Acceleration / Deceleration Method4-	11
	4.4.1 Linear and S Acceleration/Decelerations	11
	4.4.2 S Acceleration/Deceleration Pattern4-	11
	4.4.3 Indicating the Method of Acceleration / Deceleration	12
4.5	Internal Absolute Counter	13
	4.5.1 How the Internal Absolute Counter Works	13
	4.5.2 Reading Elapsed Value4-	15
	4.5.3 Writing Elapsed Value4-	16

5. Power ON and OFF, and Booting the System......5-1

5.1	Safety Circuit Design	5-3
5.2	Before Turning ON the Power	5-4
5.3	Procedure for Turning ON the Power	5-5
	5.3.1 Procedure for Turning ON the Power	5-5
	5.3.2 Procedure for Turning OFF the Power	5-6
5.4	Confirming while the Power is ON	5-7
	5.4.1 Checking the External Safety Circuit	5-7
	5.4.2 Checking the Safety Circuit based on Positioning Unit	5-8
	5.4.3 Checking the Rotation and Travel Directions, and the Travel Distance	5-8
	5.4.4 Checking the Operation of the Near Home Switch and Home Switch	5-9

6. E Point Control: Single - Speed Acceleration / Deceleration 6-1

6.1	Sample Program	6-2
	6.1.1 Increment (Relative Value Control): Plus (+) Direction	6-2
	6.1.2 Increment (Relative Value Control): Minus (-) Direction	6-4
	6.1.3 Absolute (Absolute Value Control)	6-6
6.2	Flow of E Point Control Operation	6-8
6.3	Operation of the Input and Output Before and After E Point Control	-10
6.4	Operation at Over limit Input	-11

7. P Point Control: Multi - Stage Acceleration / Deceleration 7-1

7.1	Sample Program	7-2
	7.1.1 Increment (Relative Value Control): Plus (+) Direction	7-2
	7.1.2 Increment (Relative Value Control): Minus (-) Direction	7-4
	7.1.3 Absolute (Absolute Value Control)	7-6
7.2	Flow of P Point Control Operation	7-8
7.3	Operation of the Input and Output Flag Before and After P Point Control7	7-12
7.4	Precautions When Creating P Point Control Programs	7-13
	7.4.1 Precautions Concerning the Set Value Change Confirmation Flag X_A . 7	7-13
7.5	Operation at Over limit Input	7-15
8.	JOG Operation	8-1
8.1	Sample Program	8-2
	8.1.1 JOG Operation (Forward and Reverse)	8-2
	8.1.2 JOG Operation (Forward, Reverse and Speed Changes)	8-4

8.2	Sequence Flow for JOG Operation	8-6
8.3	Changing the Speed During JOG Operation	8-8
8.4	Teaching Following JOG Operation8-	10
8	8.4.1 Example of Teaching Settings, and Sample Program	-10
8.5	Action of the I/O Flag Before and After JOG Operation8-	-12
8.6	Operation at Over limit Input8-	-13
8.7	Cautions on an Over Limit Switch8-	-14
9	JOG Positioning Operation9)-1
9.1	Sample Program	9-3
ć	9.1.1 Increment (Relative Value Control): Plus (+) Direction	9-3
ę	9.1.2 Increment (Relative Value Control): Minus (-) Direction	9-7
9.2	Flow of JOG Positioning9-	-11
9.3	Operation of the Input and Output Flag at JOG Positioning Operation9-	-14
9.4	Operation at Over limit Input9-	-15
9.5	Special Mention9-	-16
10.	Home Return10)-1
10.1	I How to Use Home Return10	D-3
	10.1.1 Return to Home Position by a Home Search)-3
	10.1.2 Home Return (Home search invalid mode)10	0-5
10.2	2 Sample Program	0-6
	10.2.1 Search to home in the Minus Direction10	0-6
	10.2.2 Search to the home in the Plus Direction10)-8
	10.2.3 Home Return in the Minus Direction (Home search invalid mode) 10-	-10
	10.2.4 Home Return in the Plus Direction (Home search invalid mode) 10-	-12
10.3	3 Flow of Operation Following a Home Return10-	-14
	10.3.1 Operation If the Home Input is the Z Phase of the Servo Driver10-	-16
	10.3.2 Operation If the Home Input is Through an External Switch	-17

10.4 Action of the I/O Flag Before and After a Home Return Operation 10-18
10.5 Checking the Home and Near Home Input Logic
10.5.1 When "Input Valid When Power is Supplied" is Specified 10-20
10.5.2 When "Input Valid When Power is not Supplied" is Specified 10-20
10.6 Practical Use for a Home Return 10-21
10.6.1 When One Switch is Used as the Home Input 10-21
10.6.2 When One Switch ON and OFF are assigned to Near Home Input and Home
10.7 Operation at Over limit Input 10-24
10.8 Cautions on an Over Limit Switch 10-25
10.9 Special Mention 10-26

11. Pulser Input Operation11-1

11.1 Sample Program	11-2
11.1.1 Pulser input operation (Transfer multiple: 1 multiple setting)	11-2
11.1.2 Pulser input operation (Transfer multiple: 5 multiple setting)	11-4
11.2 Sequence Flow for Pulser input operation	11-6
11.3 Action of the I/O Flag During Pulser Input Operation	11-9
11.4 Operation at Over limit Input	11-10
11.5 Cautions on an Over Limit Switch	11-11
11.6 Types of Manual Pulse Generators That Can be Used	11-12

12. Deceleration Stop and Forced Stop 12-1

12.1 Sample Program	12-3
12.1.1 In - progress Stopping, Emergency Stopping	12-3
12.2 Operations for a Deceleration Stop and Forced Stop	12-5
12.2.1 Deceleration Stop	12-5
12.2.2 Forced Stop	12-5

12.3 I/O Flag Operation Before and After a Stop	12-6
12.4 Precautions Concerning Stopping Operations	12-7
12.4.1 Pulse Output Done Flag Status After a Stop	12-7
12.4.2 Restarting After a Stop	12-7
12.4.3 Forced Stop Elapsed Value Data	12-7

13. Feedback Counter.....13-1

13.1 Sample Program1	13-3
13.1.1 Detecting Power Swing by Comparing Feedback Count with Elapsed Va	
13.2 Feedback Counter Functions 1	13-6
13.3 Feedback Counter Input Method1	13-7
13.4 Feedback Counter Transfer Multiple Function1	13-9

14. Precautions Concerning the operation and Programs...14-1

14.1 Precautions Relating to Basic Operations of the Unit	4-3
14.1.1 Values of Shared Memory are Cleared When Power is Turned OFF 1	4-3
14.1.2 Operation When the CPU Switches from RUN to PROG. Mode1	4-5
14.1.3 Operation Cannot be Switched Once One Operation Has Started1	4-6
14.2 Precautions Concerning Practical Usage Methods1	4-7
14.2.1 Setting the Acceleration/Deceleration to Zero1	4-7

15. Operation if an Error	Occurs	15-1
---------------------------	--------	------

15.1 Positioning Unit Operation if an Error Occurs	15-3
15.1.1 If the Positioning Unit ERR LED Lights	15-3
15.1.2 If the CPU ERROR LED Lights	15-4
15.2 Errors Which Occur in the Positioning Unit Itself	15-5
15.3 Resolving Problems	15-8
15.3.1 If the Positioning Unit ERR LED Lights	15-8

15.3.2 If the Motor Does Not Turn or Operate (if the LED for pulse output A or flashing or lighted)	
15.3.3 If the Motor Does Not Turn or Operate (if the LED for pulse output A or not lighted)	
15.3.4 Rotation/Movement Direction is Reversed 1	5-11
15.3.5 The Stopping Position is OFF for a Home Return 1	5-12
15.3.6 Speed Does not Slow for a Home Return 1	5-13
15.3.7 Movement Doesn't Stop at Home Position (after decelerating for home return)	

16.	Specifications	16-	1
-----	----------------	-----	---

16.1 Table of Performance Specification	16-3
16.2 Table of Shared Memory Area	16-6
16.3 Control Code Details	16-7
16.4 Table of I/O Flag Allocation	16-9

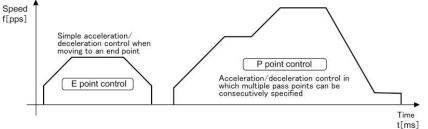
17. Dimensions and Driver Wiring17-1

17.1	Dimensions	17-3
17.2	2 Wiring for Motor Driver	17-4
	17.2.1 Panasonic MINAS A Series	17-4
	17.2.2 Panasonic MINAS S Series / E Series	17-5
	17.2.3 Panasonic MINAS EX Series	17-6
	17.2.4 Panasonic MINAS X (XX) Series	17-7
	17.2.5 Panasonic MINAS X (V)Series	17-8
	17.2.6 Oriental Motor UPK-W Series	17-9
	17.2.7 Motor Driver I/F Terminal II1	7-10

18.	Sample Program	18-	1
-----	----------------	-----	---

18.1 Sample Program	8-3
18.1.1 Positioning Program for 1 Axis18	8-3
18.1.2 Positioning for 2 Axes (Linear Interpolation Program)	8-6

Record of Changes


Glossary

E point control

This is a method of control which is initiated up to an end point, and in this manual is referred to as "E point control". This method is used for a single - speed acceleration/deceleration.

P point control

This refers to control which passes through a "Pass Point", and is called "P point control" in this manual. This method is used when a multi - stage target speed is to be specified.

Startup time

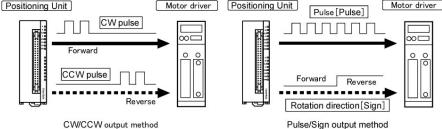
This is the time from when the startup signal is output from the CPU of the FP Σ to when the pulse output is issued from the positioning unit.

Acceleration/deceleration time

Acceleration time: the time during which the speed changes from the startup speed to the target speed after the pulse output is issued.

Deceleration time: the time during which the speed changes from the target speed to the startup speed.

CW, CCW

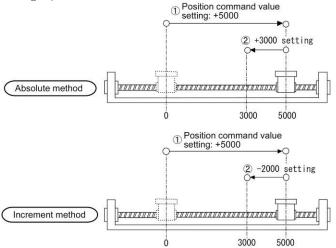

Generally, these indicate the direction in which the motor is rotating, with CW referring to clockwise rotation and CCW to counterclockwise rotation.

CW/CCW output method (2-pulse output method)

This is a method in which control is carried out using two pulses, a forward rotation pulse and a reverse rotation pulse. With the FP Σ positioning unit, this is specified using the control codes of the shared memory according to the driver specifications.

Pulse/Sign output method (1 pulse output method)

This is a method in which control is carried out using one pulse to specify the speed and ON/OFF signals to specify the direction of rotation. With the FP Σ positioning unit, this is specified using the control codes of the shared memory according to the driver specifications.

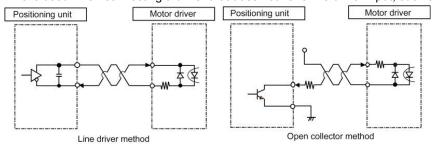


Absolute method (absolute value control method)

This is a control method in which the target position is specified as an absolute position from the home position. With the FP Σ positioning unit, this is specified in the user program, using the control codes and the position command values (see Chapter 6.1.3 "Shared memory settings.")

Increment method (relative value control method)

This is a control method in which the distance from the current position to the target position is specified as a relative position. With the FP Σ positioning unit, this is specified in the user program, using the control codes and the position command values (see Chapter 6.1.1/6.1.2 "Shared memory settings.").



Line driver output

This is one output format used in pulse output signal circuits, in which the push - pull output of the line driver is used. Because this format offers better resistance to noise than the open collector output format, a larger distance to the driver is possible. The line driver must be supported on the motor driver side. Most servo motor drivers are equipped with this format.

Open collector output

This is one output format used in pulse output signal circuits, enabling to make connections in accordance with the voltage of the power supply being used by connecting an external resistance. This is used when connecting a driver that does not have line driver input, such as a stepping motor.

JOG operation

This refers to an operation in which the motor is rotated only while operation commands are being input. This is used to forcibly rotate the motor using input from an external switch, for instance when to make adjustments. Depending on the circumstances, this can also be applied to unlimited feeding in some cases.

Deceleration stop

This is a function that interrupts the operation in progress, slows the rotation and brings it to a stop. This is used to stop an operation halfway.

JOG positioning operation

This refers to an operation to transfer a JOG operation to a positioning operation by an input from the external switch.

Positioning control start input (Timing input)

This is a JOG positioning operation input to transfer a JOG operation to a positioning operation. The pulse count settings can be output after the external switch input.

Over limit input (+), Over limit input (-)

This is an input to set a limit the motor movement. Over limit input (+) is the maximum limit and Over limit input(-) is the minimum limit.

Home return, Home search

The reference position for positioning is called a Home position and an operation to travel to a Home position is called Home return. The home position should be set in advance. This operation moves to the home position and its coordinate is set to be 0.

Home search automatically reverses the motor rotation when Over limit input(+) or Over limit input (-) is input and searches the home position or the near home position to return to the home position automatically.

Forced stop

This is function which interrupts the operation in progress, and stops it immediately. It is used to initiate an emergency stop using an external switch, and to initiate a temporary stop through an overrun.

Twisted pair cable

This refers to a cable constructed of two wires, which suppresses the effects of noise. Because current of the same size is flowing in the reverse direction (the current in the same size flows in the opposite direction between the two, noise is blanked out, which reduces the effects of the noise.

Home input

This refers to input of the reference position used for positioning, and is connected to the Z phase signal of the servo motor driver, or to an external input switch and sensor.

Near home input

In order to stop the table at the home position, a position called the near home position is specified, at which deceleration begins. This is connected to an external input switch or sensor.

Input valid logic

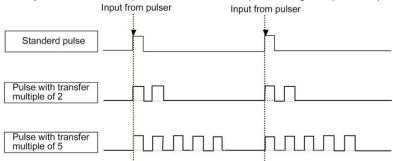
Depending on the type of sensor and switch connected to the home input and near home input, it is necessary to confirm whether the input signal will be valid when current is flowing, or whether input will be valid when no current is flowing. This is called the "input valid logic". With the FP Σ positioning unit, this setting is entered using a control code in the program.

Deviation counter

This is located inside the servo motor driver, and counts the difference between command pulses and the feedback from the encoder. Command pulses are counted as plus values and feedback pulses are counted as negative values, with control being initiated so that the difference between them is zero.

Deviation counter clear output signal

This is installed in the FP Σ positioning unit, and goes on when a home position return is completed, to notify the driver that the table has arrived at the home position.

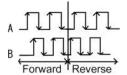

Pulser input operation

This is a device which generates pulses manually, and is used for adjustment when manual operation is used. The same type of output as that from the encoder can be obtained, and the FP Σ positioning unit is equipped with a dedicated input terminal.

Transfer multiple

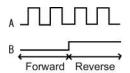
With the FP Σ positioning unit, this can be specified when the pulser operation function is used. Outputting the number of pulses doubled by the number of pulser input signals, the transfer multiple is said to be "2", and when the number of pulses is five times that of the pulser input signals, the transfer multiple is said to be "5".

Example: Transfer multiple function of the FP positioning unit pulser input

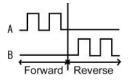


Feedback pulse input

This counts the feedback pulse from the encoder. 2-phase input, direction distinction input and individual input can be handled.


2-phase input method

This counts the signal of 2 pulses in the different phase (A phase, B phase). When A phase preceeds B phase, the motor is rotated clockwise (count increment) and when B phase preceeds A phase, the motor is rotated counter-clockwise (count decrement).


Direction distinction input method

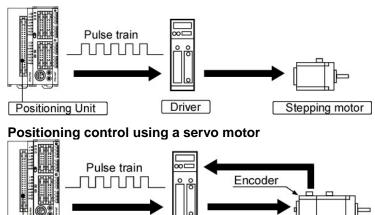
This is a method to count using ON/OFF signal specifying the pulse signal and count direction.

Individual input method

This is a method to count using the count increment pulse signal and the count decrement pulse signal.

Chapter 1

Functions of Unit and Restrictions on Combination

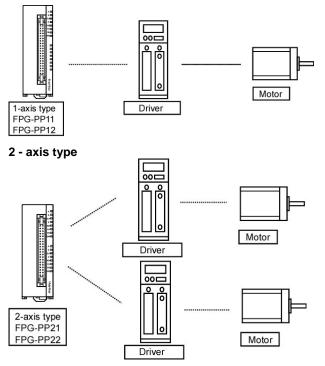

1.1 Functions of FP Σ Positioning Unit

1.1.1 Functions of Unit

Positioning can be controlled through the combination of a servo motor and a stepping motor with a driver using the pulse train input method.

Servo motor

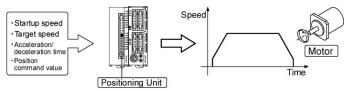
Positioning control using a stepping motor

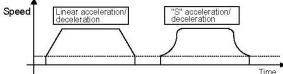

Positioning Unit

1 - axis and 2 - axis types are available.

Multiple axes (up to 2 axes) can be controlled with a single unit.

Driver


1 - axis type


Transistor output type (Open collector) and Line driver output type are available.

The unit has 2 types; one is the Line driver output type, can handle the high-speed control, and another is the Transistor output type, can handle the driver can be connected with only the open collector such as a stepping motor. When either can be used, we recommend the Line driver output type.

Automatic acceleration and deceleration can be controlled simply by providing the startup speed, target speed, acceleration/deceleration time, and position command values, as data.

The linear acceleration/deceleration and "S" acceleration/deceleration can be selected simply by setting parameters, enabling to cope with the control needs smooth acceleration and deceleration. Sin curve, Secondary curve, Cycloid curve, Third curve are available for "S" acceleration/deceleration.

Linear interpolation possible through user programs

The FP Σ positioning unit can handle simultaneous startup of multiple axes, enabling simultaneous control of linear interpolation and other elements through user programs.

1.1.2 Unit Types

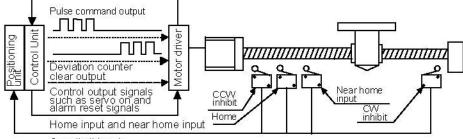
Unit type and Product number

Туре	Output type	Part number	Product number
1 – axis type	Transistor output type	FPG-PP11	AFPG430
2 – axis type	Transistor output type	FPG-PP21	AFPG431
1 – axis type	Line driver output type	FPG-PP12	AFPG432
2 – axis type	Line driver output type	FPG-PP22	AFPG433

Note: Connector for a discrete-wire is attached with a unit. (1 each for 1-axis and 2-axis types.) **Reference:** Refer to 3.1.1 for the attached connectors.

1.1.3 Combination with MINAS Motor

When using FP₂ Positioning Unit with MINAS Motor, an easy-connectable "Motor driver I/F terminal" is recommended. **Reference:** < Motor driver I/F terminal catalog >


Available MINAS Motor

	Motor driver I/F terminal	Connection cable used with a positioning unit	MINAS AⅢ series	MINAS S series E series	MINAS A series	MINAS EX series
FP2 positioning unit (Multifunction type) AFP2434, 2435 FPΣ positioning unit (Mutifunction type) AFPG432, 433	Motor driver I/F terminal II 1-axis type: AFP8503 2-axis type: AFP8504	FP2 positioning connection cable 0.5 mm:	Dedicated cable for A III series 1 m: AFP85131 2 m: AFP85132	Dedicated cable for S series 1 m: AFP85141 2 m: AFP85142	Dedicated cable for AII series 1 m: AFP85131 2 m: AFP85132	N/A
FP2 positioning unit AFP2430, 2431	Motor driver I/F terminal 1-axis type: AFP8501 2-axis type: AFP8502	AFP85100 1 mm: AFP85101	N/A	BRK OFF signal cannot be used.	Dedicated cable for A series 1 m: AFP85111 2 m: AFP85112	Dedicated cable for EX series 1 m: AFP85121 2 m: AFP85122

1.2 Unit Functioning and Operation Overview

1.2.1 Unit Combinations for Positioning Control

Control signals such as alarms and end of positioning

Over limit input

Interfaces provided with the positioning unit

In addition to pulse command output for the motor driver, the positioning unit is equipped with home input and near home input terminals, with Over limit input(+) and Over limit input(-) input, with Positioning control start input (Timing input) for JOG positioning operation, with deviation counter clear output with home input and near home input terminals, and with deviation counter clear output for the servo driver.

Use input unit and output unit for PLC safety circuit and control signal interfaces.

In addition to the positioning unit, input and output contacts of the Control unit or FP Σ Expansion I/O Unit is used in combination for connections between the driver and external output such as servo ON signals.

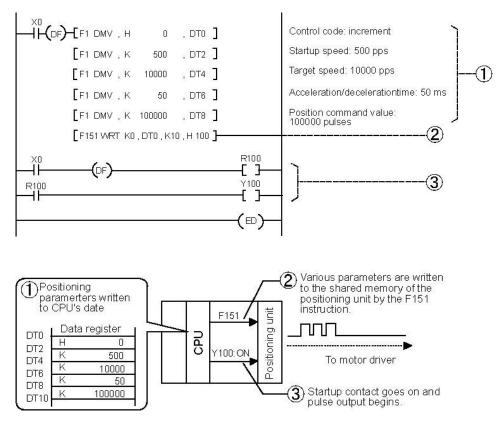
Number of output pulses counted by internal high - speed counter.

The number of pulses output is counted as an absolute value by an internal high – speed counter, which counts them as the "elapsed value".

Counting range: - 2,147,483,648 to +2,147,483,647 (signed 32 - bit)

Note:

If the elapsed value exceeds the maximum (minimum) value, the value returns automatically to the minimum (maximum) value and continues from that point. The motor does not stop if this occurs, and no error occurs.


The external encoder can count the feedback pulse from the external encoder.

The internal counter counts the pulse input as "Feedback pulse count value" as the absolute value. Counting range: - 2,147,483,648 to +2,147,483,647 (signed 32 - bit) **Note:**

If the elapsed value exceeds the maximum (minimum) value, the value returns automatically to the minimum (maximum) value and continues from that point. The motor does not stop if this occurs, and no error occurs.

1.2.2 Basic Operation of FP Σ Positioning Unit

Control proceeds by turning ON and OFF the shared memory and input/output flag.

1 Determining the necessary data.

The types of data written to the positioning unit include control codes, the startup speed, the target speed, the acceleration/deceleration time, and the position command value. The types and number of required data varies depending on the objective. Programming is set up so that these data values may be written to any desired data register.

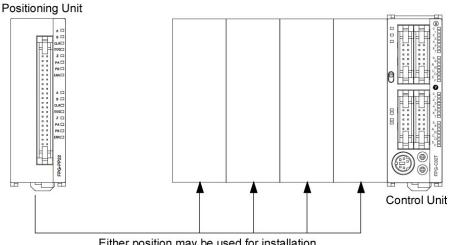
② Transferring to the shared memory.

The data stored in the data registers is sent to the positioning unit by means of the F151 instruction, where it waits for further instructions. The memory area which receives that transferred data is called the "shared memory" of the positioning unit. This area is used for various types of control, including E point control, P point control, JOG operation, JOG positioning operation, home return(home search), and pulser input operation, and a separate shared memory area is provided for each of the axes.

③ Initiating control operations.

In order to execute the data waiting in the positioning unit, the startup flag of the various operation modes are turned ON. The abovementioned-programming example shows this process for Y100. Y100 is the number of the flags that starts up the E point control of the first axis when the unit is installed in slot 0. Separate flags are provided for each of the axes, for E point control, P point control, home return, JOG operation, JOG positioning operation and other types of control.

1.3 Restrictions on Units Combination


1.3.1 Restrictions on Combinations Based on Current Consumption

The internal current consumption (at 5 V DC power supply) for the positioning units is noted below. When the system is configured, the other units being used should be taken into consideration, and a power supply unit with a sufficient capacity should be used.

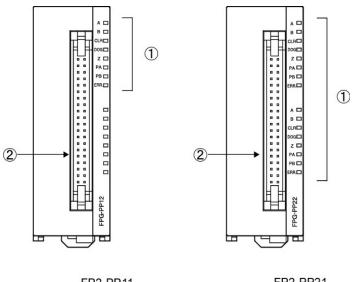
Part number	Product number	Current consumption at 5 V DC
FPG-PP11	AFPG430	150mA
FPG-PP21	AFPG431	220mA
FPG-PP12	AFPG432	150mA
FPG-PP22	AFPG433	220mA

1.3.2 Restrictions on Unit Installation Position

Up to 4 of the positioning units can be installed to the left of the FP Σ Control Unit. (Installing to the right is unavailable.)

Either position may be used for installation.

1.3.3 Restrictions on the Number of Units Installed


There are no restrictions on the number of units that may be installed, as long as the restrictions described in 1.3.1 and 1.3.2 above are observed.

Chapter 2

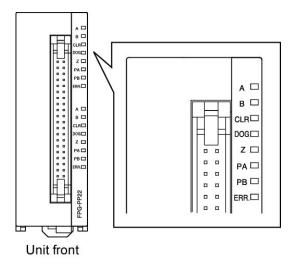
Parts and Specifications

2.1 Parts and Specifications

2.1.1 Parts and Specifications

1-axis type FP2-PP11 FP2-PP12 2-axis type FP2-PP21 FP2-PP22

1 Operation status display LEDs


These display operation conditions.

② User interface connector for 1 - axis/2 - axis

This connector is used to connect a motor driver or external interface.

2.1.2 Operation Status Display LEDs

LEDs show the same information for each axis.

Operation Status Display LEDs

LED	Des	cription	LED ON	LED OFF	LED blinks
А	Pulse output signal A	When set to pulse/sign output method		During stop	During pulse output
~	display (* 1)	When set to CW/CCW output method		During stop (forward)	During pulse output (forward)
D	Pulse output B signal B display (* 1)	When set to pulse/sign output method	Reverse direction command	Forward direction command	
6		When set to CW/CCW output method		During stop (reverse)	During pulse output (reverse)
CLR	Counter clear s display	ignal output	Output: ON	Output: OFF	
DOG	Near home stat	tus display (* 2)	ON	OFF	
Z	Home input status display (* 2)		ON	OFF	
PA	Pulse input A signal display (*3)		Displays the input status of the pulse inupt A signal.		
PB	Pulse input B signal display (*3)		Displays the input status of the pulse inupt B signal.		
ERR	Setting value en Limit input error		Setting value: error	Setting value: normal	

Note:

(*1): The pulse output signal display LEDs (A and B) blink at the output frequency (speed). For this reason, they may appear to light steadily at high-speed output.

- (*2): The home input (Z) LED lights when the respective input becomes valid. The input valid logic is specified using the control codes in the program. (In the manual, "Z" is described as "ZSG".)
- (*3): Pulse input signal (PA) and (PB) display the pulse signal input status.

Chapter 3

Wiring

3.1 Connecting using Connector for a Discrete-Wire

3.1.1 Specifications of Connector for Discrete-wire

This is a connector that allows loose wires to be connected without removing the wire's insulation. The pressure connection tool (AXY52000FP) is required to connect the loose wires.

Discrete-wire connector (40P)

Suitable wire (twisted wire)

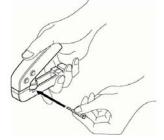
Size	Official cross section area	Insulation thickness	Rated current	
AWG22	0.3mm ²	1.5 to 1.1 dia.	ЗA	
AWG24	0.2mm ²	1.5 to 1.1 tild.	54	

Discrete-wire connector (attached with a unit)

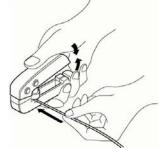
Manufacturer	Component parts	Unit type and required quantit		
Manufacturer	component parts	2-axis type	4-axis type	
Dependenia Flactria	Housing(40P)	1 pc x 1	1 pc x 2	
Panasonic Electric Works SUNX Co., Ltd.	Semi-cover(40P)	2 pcs x 1	2 pcs x 2	
WORKS SOINA CO., Ltd.	Contact (for AWG22 and AWG24) 5pin	8 pcs x 1	8 pcs x 2	

* 1 connector set and 2 connector sets are supplied with the 2-axis type unit and 4-axis type unit, respectively.

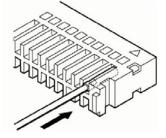
Dedicated tool

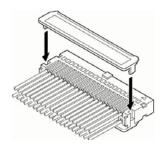

Manufacturer	Product number
Panasonic Electric Works SUNX Co., Ltd.	AXY52000FP

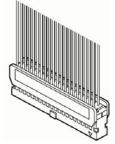
Pressure connection tool


3.1.2 Assembly of Discrete-Wire Connector

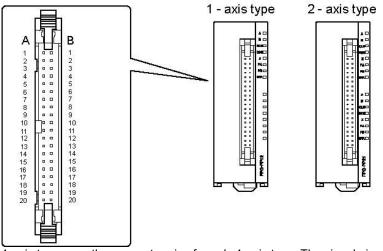
The wire end can be directly press-fitted without removing the wire's insulation, saving labor. **Procedure:**


1. Bend the contact back from the carrier, and set it in the pressure connection tool.


2. Insert the wire without removing its insulation until it stops, and lightly grip the tool.



3. After press-fitting the wire, insert it into the housing.


4. When all wires has been inserted, fit the semi-cover into place.

3.2 Input /Output Specifications and Out put terminal Layout

3.2.1 Input /Output Specifications

1-axis type uses the connector pins for only 1-axis type. The signal pins for 2 axes are assigned to a connector. Between the Transistor type and the Line driver type, the pulse output terminal performace is different, but the input terminal and the power supply terminal are in the same specifications.

Pin n	umber	Circuit	Signal name		ltem	Description
1 - axis	2 - axis	Circuit	Signal name		nem	Description
A1	A10	A1/A10	Pulse output A: 5V DC output	S	Output format	Open collector
B1	B10	<u> </u>	Pulse output A: Open collector	Output Specifications	Operating voltage range	4.75 V DC to 26.4 V DC
A2	A11	- B1/B10 B2/B11	Pulse output B: 5V DC output	Out	Max. load current	15 mA
B2	B11	-117	Pulse output B: Open collector	S	ON Max. voltage drop	0.6 V

Output terminals (Transistor Output type)

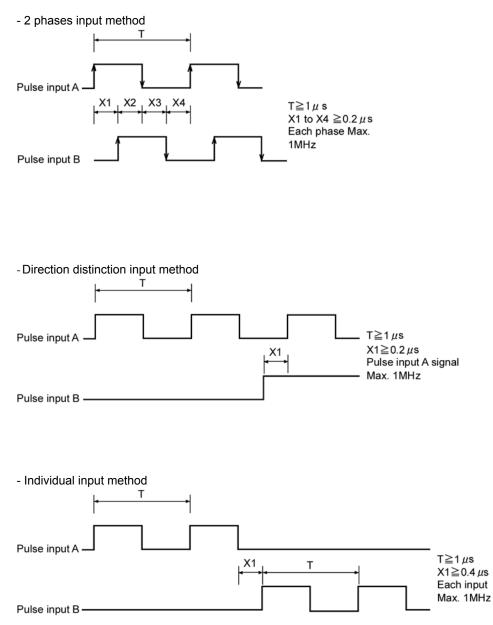
Pin n	umber	Circuit	Signal name		Item	Description
1 - axis	2 - axis	Circuit	Signal name		item	Description
A1	A10	A1/A10	Pulse output A: Line driver (+)	s		
B1	B10	^{© A2/A11}	Pulse output A: Line driver (-)	Output ecifications	Output format	Line driver output Equivalent to
A2	A11	B1/B10	Pulse output B: Line driver (+)	Out Specifi	Output Ionnat	AM26C31
B2	B11	B2/B11	Pulse output B: Line driver (-)	<u></u>		

Output terminals (Line driver output type)

Output terminals (common)

Pin nu	umber	Circuit	Signal name		Item	Description
1 - axis	2 - axis	Circuit	Signal name		item	Description
A7	A16		Deviation counter clear	SI	Output format	Open collector
~	Alo	A7/A16	(+)	Output ecificatior	Operating voltage range	4.75 V DC to 26.4 V DC
B7	B16	• B7/B16	Deviation counter clear	Out	Max. load current	10mA
67	010		(-)	Sp	ON Max. voltage drop	1V

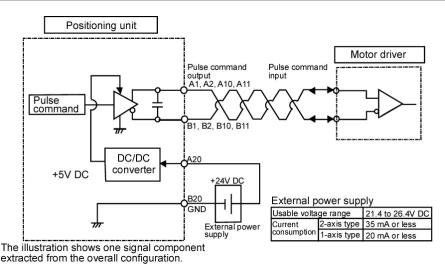
Note: The deviation counter clear signal is output when the power supply is turned ON (about 1ms) and when the Home Return is complete. Its ON time can be selected using the Control code of the shared memory, from 1ms (factory setting) to 10ms.


Power supply terminals and Earth terminals (common)

Pin number	Circuit	Signal name		ltem	Description
A19/B19	¢ ^{A19/B19}	F.E. (Field Earth)	su		
A20	o ^{A20}	External power supply input: 24 V DC (+)	specifications	Power supply voltage range	21.4 V DC to 26.4 V DC
B20	# ^{B20}	External power supply input: 24 V DC (-)	Power	Current consumption	2 - axis type: 35 mA or less 1 - axis type: 20 mA or less

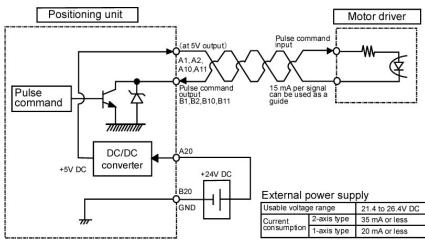
Input Terminals(common)

	umber	Circuit	Signal name		Itom	Description
1 - axis	2 - axis	Circuit	Signal name		Item	Description
				ns	Operating voltage range	21.6V DC to 26.4V DC
A3	3 A12	A12	Home input: 24 V DC (+)	Input specifications	Min. ON voltage/current	19.2V DC/5.5mA
			(Z24)	In specif	Max. OFF voltage/current	2V DC/2mA
		A3/A12			Input impedance	Approx 3kΩ
		• (Z24) • A4/A13 (Z5)		Input specifications	Operating voltage range	3.5V DC to 5.25 (5V DC,Line driver specifications)
A4	A13	→ B3/B12	Home input: 5V DC (+)	ecific	Min. ON voltage/current	3V DC/4mA
			(Z5)	out sp	Max. OFF voltage/current	1V DC/0.5mA
				duj	Input impedance	Approx. 390 Ω
B3	B12		Home input (-)		Min. input pulse width	100µs
B4	B13		СОМ		Operating voltage range	21.6V DC to 26.4V DC
		В4/В13 СОМ				Near home input (DOG) 19.2V DC/5.0mA
A5	A14	45/A14 DOG	Near home input (DOG)		Min. ON voltage/current	Over limit input (+) (Limit +) Over limit input (-) (Limit -) Positioning control start input (timing input) 19.2V DC/2.6mA
A6	A15	A6/A15 Limit +	Over limit input (+) (Limit +)	Input specifications	Max. OFF voltage/current	2V DC/1.5mA
B6	B15	B6/B15 Limit - B5/B14	Over limit input (-) (Limit -)	Input	Input impedance	Near home input (DOG) Approx $3.6k\Omega$ Over limit input (+) (Limit +) Over limit input (-) (Limit -) Positioning control start input (timing input) Approx $6.8k\Omega$
B5	B14	Timing input	Positioning Control start input (Timing input)		Min. input	500µs
A8	A17	A8/A17 A9/A18	Pulse input A (+)		Operating voltage range	3.5 to 5.25 V DC (5V DC, Line driver specifications)
B8	B17	-	Pulse input A (-)	utput ations	Min. ON voltage/current	3V DC/3.2mA
A9	A18	₽	Pulse input B (+)	Input/Output specifications	Max. OFF voltage/current	1V DC/0.5mA
В9	B18	B8/B17	Pulse input B	sp(Input impedance	Approx 390 Ω
	210	B9/B18	(-)		Min. input pulse width	0.5µs(max. 1MHz each phase)


Note: Please use under the specifications for pulse input A, B signal.

3.3 Supplying Power for Internal Circuit Drive

Always make sure an external +24V DC power supply is connected to the pins for external input power supply (pin No. A20 and B20).


The applied 24V DC passes through an internal DC/DC converter and is converted to 5 V DC voltage. It is then supplied to the various internal circuits as a power supply for internal circuit drive of the pulse command output pin.

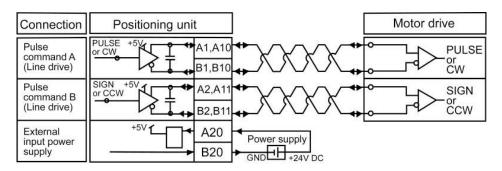
3.3.1 Line Driver Output Type

3.3.2 Transistor Output Type

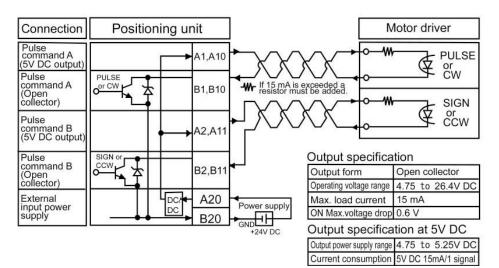
The power supply for the pulser command output circuit can be taken from the 5V DC out put pins (pin No. A1, A2, A10 and A11)

Note:

When open collector pulse output (Transistor output) is used, the value of 15 mA per signal should be used as a guide. If exceeds the 15 mA, the appropriate resistance should be added.

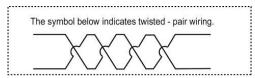

3.4 Connection of Pulse Command Output Signal

Two types of output types are available for the FP Σ positioning unit due to two types of the interfaces of motor driver. Select and connect one or the other, depending on the interface of the motor driver being used.

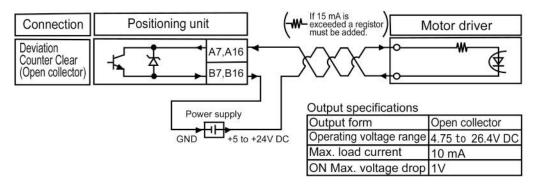

Note:

We recommend using twisted - pair cables as the wiring between the positioning unit output and the motor driver, or twisting the cables to be used.

3.4.1 Line Driver Output type



3.4.2 Transistor Output Type


Note:

A value of 15 mA per signal should be used as a guide. If exceeds this, resistance should be added.

3.5 Connection of Deviation Counter Clear Output Signal (for servo motor)

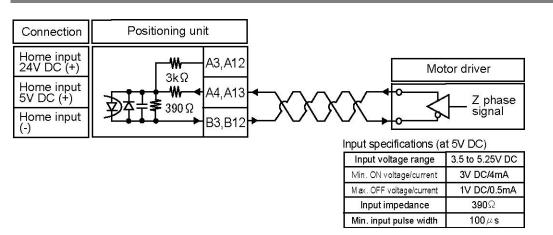
This is an example showing connection of the counter clear input to the servo motor driver. An external power supply (+5 V DC to +24 V DC) must be provided for the connection.

Note:

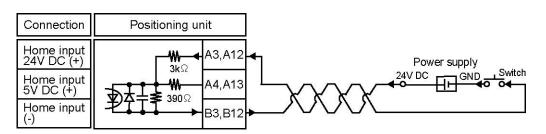
Always use twisted - pair cables for wiring.

The Current which can be conducted as the deviation counter clear output signal is 10 mA max. If 10 mA is exceeded, resistance should be added.

3.6 Connection of Home Input/Near Home Input Signals

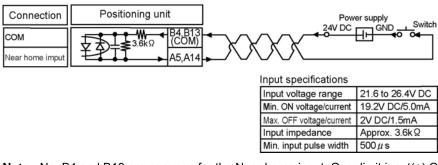

This is the home signal input connection for the home return.

It should be connected to the Z phase output (Line driver output or Transistor output) of the motor driver, or to an external switch and sensor.

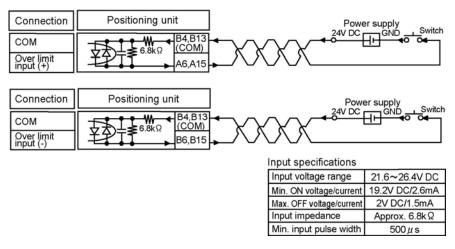

Note:

We recommend using twisted - pair cables as the wiring between the positioning unit output and the motor driver, or twisting the cables used.

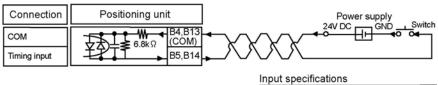
3.6.1 Connection of Home Input (When connecting to motor driver Z phase output)


3.6.2 Connection of Home Input (When connecting to an external switch/sensor)

Input specifications	(at 24V	DC)
----------------------	---------	-----


Input voltage range	21.6~26.4V DC				
Min. ON voltage/current	19.2V DC/5.5mA				
Max. OFF voltage/current	2V DC/2mA				
Input impedance	Approx. 3k Ω				
Min. input pulse width	100 <i>µ</i> s				

3.6.3 Connection of Near Home Input Signal


Note: No. B4 and B13 are common for the Near home input, Over limit input(+),Over limit input(-) and Positioning control start input(Timing input).

3.6.4 Connection of Over limit Input Signal

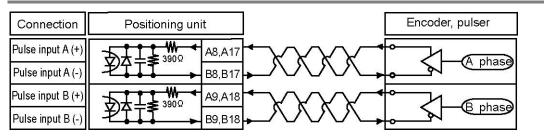
Note: No. B4 and B13 are common for the Near home input, Over limit input(+),Over limit input(-) and Positioning control start input(Timing input).

3.6.5 Connection of Positioning control start input(Timing Input) Signal

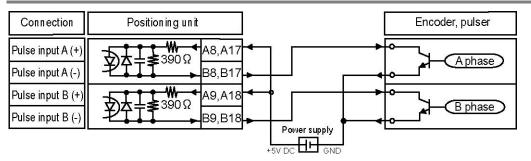
Input specifications	
Input voltage range	21.6~26.4V DC
Min. ON voltage/current	19.2V DC/2.6mA
Max. OFF voltage/current	2V DC/1.5mA
Input impedance	Approx. 6.8kΩ
Min. input pulse width	500μs

Note: No. B4 and B13 are common for the Near home input, Over limit input(+),Over limit input(-) and Positioning control start input(Timing input).

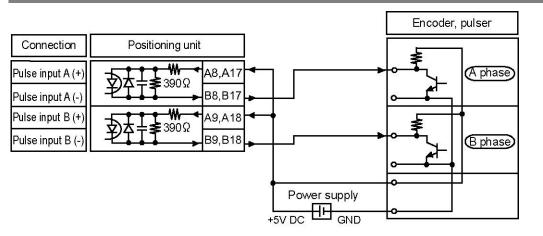
3.7 Connection of Pulse Input


The signal output style may differ depending on Pulser or Encoder. Connect in accordance with the output style. Line driver type, Transistor open collector type and Transistor-resistance pull-up type are available for the output styles.

The same pulse input terminal is used for Pulser input operation and Feedback pulse count, so it is used for either.


Note:

- We recommend using twisted pair cables for connections, or twisting the cables used.
- When counting the 2-phase input such as the input from the encoder, set the pulse input transfer multiple to "4 multiple setting" (x 4) or "2 multiple setting" (x 2) using the control code to prevent counting error.


3.7.1 Line Driver Type

3.7.2 Transistor Open Collector Type

3.7.3 Transistor - resistor Pull - up Type

3.8 Precausions on Wiring

Connect the wire in less than or the following length between the Transistor output type and the motor driver, and between the Line driver output type and the motor driver.

<Signals applicable> Transistor output Line driver output Deviation counter clear output

Output type	Product number	Wiring length
Transistor output type	AFPG 430	
Transistor output type	AFPG 431	10m
Line driver output type	AFPG 432	10111
Line driver output type	AFPG 433	

Chapter 4

Confirming the Unit Settings and Design Contents

4.1 Pulse Output Mode

4.1.1 Selection of Rotation Direction

Changing this settings allows to rotating a motor in a reverse direction under the same connection status and the driver settings.

Shared momory Control code Higher the 8th. bit 0= forward rotation 1= reverse rotation

4.1.2 Selection of Pulse Output Mode

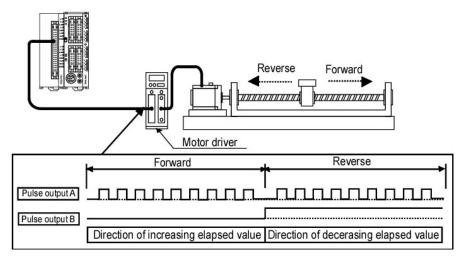
The pulse output mode can be selected to match the pulse input mode supported by the motor driver. The two types of pulse output described below can be selected.

Shared memory Control code Higher the 9th. bit 0: Pulse / Sign 1: CW/CCW

Pulse/sign output method

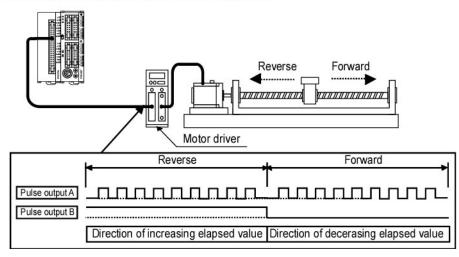
With this method, pulse output signals for motor drive (signals that determine the rotation speed of the motor) and signals that determine the rotation direction of the motor are output. Pulse signals (pulses) are output from the pulse output A pin, while signals that determine the rotation direction (signs) are output from the pulse output B pin.

CW/CCW output method


With this method, pulse output signals for forward rotation and pulse output signals for reverse rotation are output in response to the direction in which the motor is rotating (CW/CCW: clockwise/counter - clockwise).

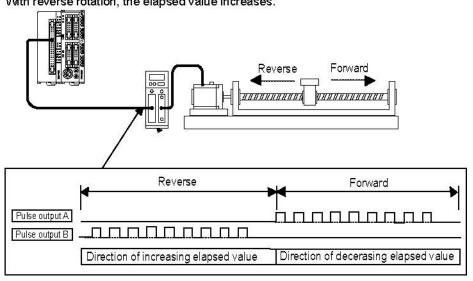
When the shared memory control code Higher 8 bit is 0 (default setting), forward rotation (CW: clockwise) pulse signals are output from the pulse output A pin, and reverse rotation (CCW: counter - clockwise) pulse signals are output from the pulse output B pin.

4.1.3 Setting the Shared Memory Control Code Relationship with Rotation Direction


Pulse/Sign mode Common memory Control code Higher The 9th. bit The 8th. bit 0 0

With forward rotation, the elapsed value increases. With reverse rotation, the elapsed value decreases.

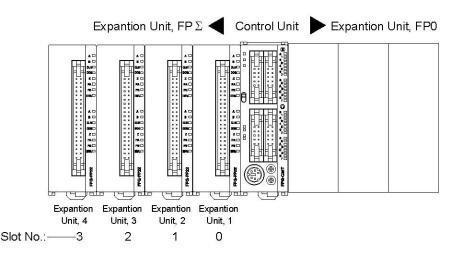
Pulse/Sign mode Common memory Control code Higher The 9th. bit The 8th. bit 0 1


With forward rotation, the elapsed value decreases. With reverse rotation, the elapsed value increases.

CW/CCW mode **Common memory Control code Higher** The 9th. bit The 8th. bit 0 1 With forward rotation, the elapsed value increases. With reverse rotation, the elapsed value decreases. Reverse Forward Forward Reverse Pulse output A Pulse output B Direction of increasing elapsed value Direction of decerasing elapsed value

CW/CCW mode

Common memory Control code HigherThe 9th. bitThe 8th. bit11With forward rotation, the elapsed value decreases.
With reverse rotation, the elapsed value increases.


Note:

The direction of rotation varies depending on the wiring, the motor driver settings, the position command value in the program, and other factors.

4.2 Confirming the Slot Number and I/O Number Allocations

4.2.1 Slot Number

Slot Number shows the position of the expansion unit, which is used for a programming. I/O Area allocation varies depending on the Slot Number.

4.2.2 I/O Area Allocation

With the positioning unit, as with other I/O units, allocations are entered for the input (X) and output (Y). The positioning unit has 16 input points and 16 output points per axis and a 2 - axis type has 64 points (32 input points and 32 output points).

These are common for the Transistor output type and the Line driver output type.

 $\mathsf{FP}\Sigma$ automates occupied I/O area when attached with a unit. Not necessity for a setup.

The I/O area allocation is decided depending on an installation and its configuration is as follows:

Turne	Points	I/O No.					
туре	Type (allocated using the tool software)		Slot 0	Slot 1	Slot 2	Slot 3	
1-axis	Input 16 points	1st. axis	X100 to X10F (WX10)	X180 to X18F (WX18)	X260 to X260F (WX26)	X340 to X34F (WX34)	
type	Output 16 points	ISL AXIS	Y100 to Y10F (WY10)	Y180 to Y18F (WY18)	Y260 to Y26F (WY26)	Y340 to Y34F (WY34)	
	Input 32 points	1st. axis	X100 to X10F (WX10)	X180 to X18F (WX18)	X260 to X26F (WX26)	X340 to X34F (WX34)	
2-axis		2nd. axis	X110 to X11F (WX11)	X190 to X19F (WX19)	Y260 to Y26F (WY26)	Y340 to Y34F (WY34)	
type	/pe Output 32 points	1st. axis	Y100 to Y10F (WY10)	Y180 to Y18F (WY18)	X270 to X27F (WX27)	X350 to X35F (WX35)	
		2nd. axis	Y110 to Y11F (WY1)	Y190 to Y19F (WY19)	Y270 to Y27F (WY27)	Y350 to Y35F (WY35)	

4.2.3 Contents of Input and Output Allocations

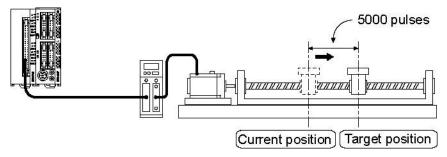
				I/O	flag numbe	er (* 5)
Flag	Flag Name		Name Description		2 - axis type	
				1st axis	1st axis	2nd axis
X_0	Pulse output busy	BUSY	ON during pulse output. (* 1)	X100	X100	X110
X_1	Pulse output done	EDP	Goes ON when pulse output ends. (* 2)	X101	X101	X111
X_2	Acceleration zone	ACC	ON during acceleration zone.	X102	X102	X112
X_3	Constant speed zone	CON	ON during constant speed zone.	X103	X103	X113
X_4	Deceleration zone	DEC	ON during deceleration zone.	X104	X104	X114
X_5	Rotation direction	DIR	Monitors direction of rotation (On during the elapsed value increment)	X105	X105	X115
X_6	Home input	ZSG	Goes ON when home input becomes valid.	X106	X106	X116
X_7	Near home input	DOG	Goes ON when near home input becomes valid.	X107	X107	X117
X_8	Home return done	ORGE	Turns ON when home return is done. (*3)	X108	X108	X118
X_9	Comparison result	CLEP	ON when elapsed value of internal counter is greater than or equal to the number of comparison pulse.	X109	X109	X119
X_A	Set value change confirmation	CEN	With P point control, this is used to confirm rewriting of set values. (* 4)	X10A	X10A	X11A
Х_В	Over limit input (+)	LMTP	Monitor flag of Over limit Input (+) signal.	X10B	X10B	X11B
x_c	Over limit input (-)	LMTM	Monitor flag of Over limit Input (-) signal.	X10C	X10C	X11C
X_D	Timing input monitor	TIMM	Monitor flag of JOG positioning timing.	X10D	X10D	X11D
X_E	Set value error	SERR	ON when a set value error occurs.	X10E	X10E	X11E
X_F	Limit error	LERR	ON when Over limitinput is made during operation or at startup.	X10F	X10F	X11F

- *1): This goes ON during pulse output in various operations such as E point control, P point control, home return, JOG operation, JOG positioning operation and remains ON until the operation has been completed.
- *2): This goes ON when the various operations such as E point control, P point control, JOG operation, JOG positioning operation, and pulser input operation have been completed. It also goes ON when deceleration stop have been completed, and when a forced stop has been completed. It goes OFF when the next operation such as E point control, P point control, JOG operation, JOG positioning operation, a home return, or pulser input operation is initiated.
- *3): This goes ON when Home return is completed. It goes OFF when the next operation such as E point control, P point control, JOG operation, JOG positioning operation, a home return, or pulser input operation is initiated.
- *4): This goes ON when P point control or E point control is initiated, and goes OFF when the shared memory write instruction F151 is executed, and data of any kind is written to the shared memory of the positioning unit.
- *5): The input and output flag numbers indicate the number when the slot number is 0. The numbers actually used change depending on the position in which the unit is installed.

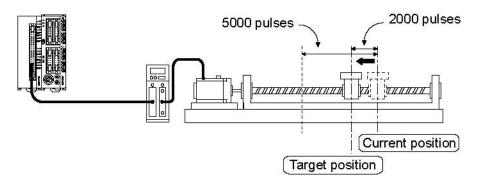
			I/O f 1 - axis	flag number (* 5)		
Flag	Name	•	Description			is type
				1st axis	1st axis	2nd axis
Y_0	E point control start	EST	When turned ON in the user program, E point control is initiated.	Y100	Y100	Y110
Y_1	P point control start	PST	When turned ON in the user program, P point control is initiated.	Y101	Y101	Y111
Y_2	Home return start	ORGS	When turned ON in the user program, a home return is initiated.	Y102	Y102	Y112
Y_3	Forward JOG	JGF	When turned ON in the user program, JOG forward rotation is initiated.	Y103	Y103	Y113
Y_4	Reverse JOG	JGR	When turned ON in the user program, JOG reverse rotation is initiated.	Y104	Y104	Y114
Y_5	Forced stop	EMR	When turned ON in the user program, operations currently running are interrupted and forcibly terminated.	Y105	Y105	Y115
Y_6	Deceleration stop	DCL	When turned ON in the user program, operations currently running are interrupted, and decelerate to a stop.	Y106	Y106	Y116
Y_7	Pulser input enabled	PEN	When turned ON in the user program, pulser input is enabled (valid only while on).	Y107	Y107	Y117
Y_8	JOG positioning operation start	JGST	ON during JOG positioning operation.	Y108	Y108	Y118
Y_9	JOG positioning start	TIM	ON at the timing of the positioning start after JOG operation,(when JOG positioning is confirmed.)	Y109	Y109	Y119
Y_A	-			Y10A	Y10A	Y11A
Y_B	—			Y10B	Y10B	Y11B
Y_C	—			Y10C	Y10C	Y11C
Y_D	—			Y10D	Y10D	Y11D
Y_E	—			Y10E	Y10E	Y11E
Y_F	Error clear	ECLR	If an error occurs, the error is canceled when this is turned ON in the user program.	Y10F	Y10F	Y11F

4.3 Increment and Absolute

There are two ways to set the position command value. Specify whichever due to your usage.


4.3.1 Increment (relative value control)

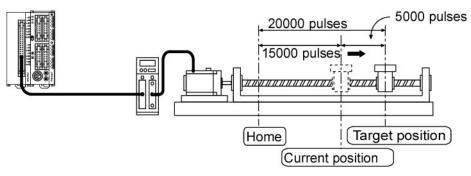
The position command value is normally specified as the relative position from the current position, using a number of pulses.


Example:

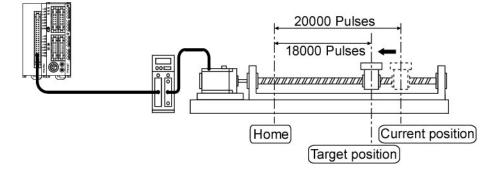
Travels from the current position to a position + 5,000 pulses away.

"+5000 pulses" is set as the position command value, and travel is carried out.

" - 2000 pulses" is set as the next position command value, and travel is carried out.

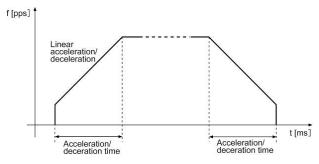

4.3.2 Absolute (absolute value control)

The position command value is normally specified as the absolute position from the home position, using a number of pulses.


Example:

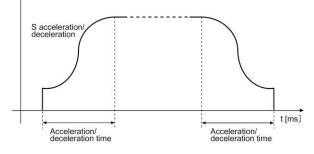
If the unit is 15,000 pulses away from the home position, it travels +5,000 pulses,

"+20000 pulses" is set as the position command value, and travel is carried out.


" + 18000 pulses" is set as the next position command value, and travel is carried out.

4.4 Selection of Acceleration / Deceleration Method

4.4.1 Linear and S Acceleration/Decelerations


The FP Σ positioning unit has two methods of acceleration and deceleration which can be selected: Linear acceleration/deceleration and S acceleration/deceleration. With linear acceleration/deceleration, acceleration and deceleration from the starting speed to the target speed) are carried out in a straight line. (acceleration and deceleration take place at a constant percentage.)

S acceleration/deceleration is carried out along an S - shaped curve. When acceleration or deceleration is first begun, the speed is relatively slow, and gradually increases.

When the acceleration or deceleration has been almost completed, the speed slows once again. This results in comparatively smooth movement. Sin curve, Secondary curve, Cycloid curve and Third curve are available for S acceleration/deceleration. The acceleration/deceleration will be completed for the time set in the shared memory.

f [pps]

4.4.2 S Acceleration/Deceleration Pattern

S acceleration/deceleration curve grade: Third curve > Cycloyd curve > Secondary curve > Sin curve

4.4.3 Indicating the Method of Acceleration / Deceleration

Indicating the method of acceleration/deceleration

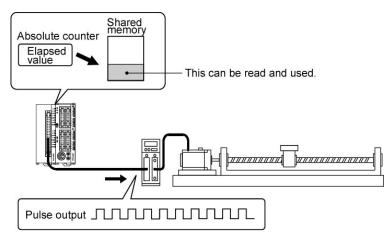
This is specified in the program, as a control code. **Example:** With E point control

	F1	DMV			0 I ntrol cod		DT	0	ן
C	F1	DMV	,	к	500	,	DT	2]
L C	F1	DMV	,	к	10000	,	DT	4]
L L	F1	DMV	1	κ	100		DT	6]
L L	F1	DMV	,	Κ	100000	,	DT	8]
Ľ	F151	WRT	,	K1	, DT0	, k	(10,	H1	00]

The method of control varies depending on the control code.

- When the code is H0: increment method, linear acceleration/deceleration
- When the code is H1: absolute method, linear acceleration/deceleration
- When the code is H2: increment method, S acceleration/deceleration (Sin curve)
- When the code is H3: absolute method, S acceleration/deceleration (Sin curve)
- When the code is H1002: increment method, S acceleration/deceleration (Secondary)
- When the code is H1003: absolute method, S acceleration/deceleration (Secondary)
- When the code is H2002: increment method, S acceleration/deceleration (Cycloid)
- When the code is H2003: absolute method, S acceleration/deceleration (Cycloid)
- When the code is H3002: increment method, S acceleration/deceleration (Third)
- When the code is H3003: absolute method, S acceleration/deceleration (Third)

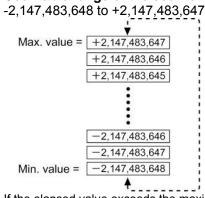
4.5 Internal Absolute Counter


4.5.1 How the Internal Absolute Counter Works

How the internal absolute counter works

-The positioning unit is equipped with a function that counts the number of pulses output.

- -The counted value of each axis is stored in the shared memory area of the positioning unit.
- -The stored value is read by the user program, enabling the position data (absolute value) to be
- discerned. This is used in functions such as teaching during JOG operation.


-Using the comparison relay output function, external output can be obtained in response to the count value, through the user program.

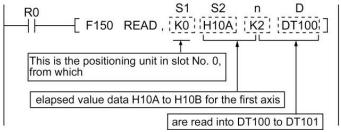
How the internal absolute counter operates

- -When the power supply is turned OFF, the counter value is set to zero (0).
- -When the table returns to the home position by a home return, the counter value automatically becomes zero (0).
- -The counter value is counted as an absolute value, based on the pulse output value.
- -The value stored in the shared memory can be read using the F150 instruction in the user program.
- The counter value can be overwritten using the F151 instruction in the user program.
- Overwriting should be done while the operation is stopped.

Countable range of the counter

If the elapsed value exceeds the maximum (or minimum) value, it returns to the minimum (maximum) value. Pulse output does not stop if this occurs, and no error occurs.

Shared memory address in which the counter value is stored


Address of shared memory (hexadecimal)		Description		
1st. axis	2nd. axis	Description		
10Ah	11Ah	Elapsed value count	Signed 32 - bit	
10Bh	11Bh	(absolute value)	- 2,147,483,648 to +2,147,483,647	

4.5.2 Reading Elapsed Value

The F150 instruction is used to read the elapsed value from the shared memory of the positioning unit.

F150 (READ) instruction

This is the instruction used to read data from the memory of the positioning unit.

Explanation:

"n" words of the data stored in the shared memory of the unit mounted in the slot specified by "S1" are read from the address specified by "S2", and are stored in the area of the CPU specified by "D".

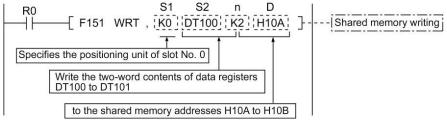
Specified addresses

Data (elapsed values) are stored as 32 - bit data.

Address of shared memory (hexadecimal)		Description		
1st. axis	2nd. axis	Description		
10Ah	11Ah	Elapsed value count	Signed 32 – bit	
10Bh	11Bh	(absolute value)	- 2,147,483,648 to +2,147,483,647	

Program example

Reads the elapsed value into the optional data register.


```
_____[ F150 READ, K0, H10A, K2, DT100 ]
```

4.5.3 Writing Elapsed Value

The F151 instruction is used to write data to the shared memory of the positioning unit.

F151 (WRT) instruction

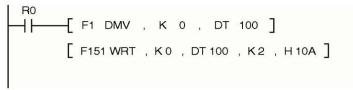
This is the instruction that write data to the shared memory of the positioning unit.

Explanation:

This stores the contents of the CPU area specified by "S2" and "n" in the address specified by "D" of the shared memory of the unit mounted in the slot specified by "S1", at the beginning of the memory area.

Specified addresses

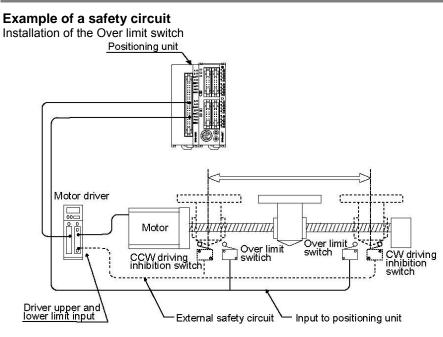
Data (elapsed values) are stored as 32 - bit data.


Address of sha	red memory (hexadecimal)	al) Description		
1st. axis	2nd. axis	Description		
10Ah	11Ah	Elapsed value Signed 32 - bit		
10Bh	11Bh	count (absolute value)	- 2,147,483,648 to +2,147,483,647	

Note:

Elapsed values should be written while the operation is stopped.

Program example


Writes the data "0 (zero)" into the elapsed value area.

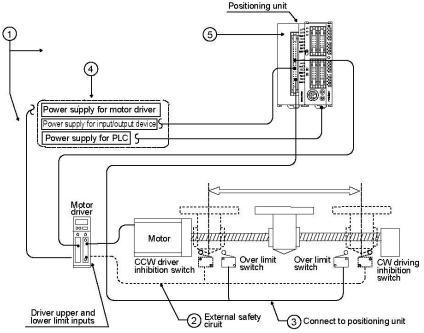
Chapter 5

Power ON and OFF, and Booting the System

5.1 Safety Circuit Design

Safety circuit based on Positioning unit

Install Over limit switches as shown above. Connect them to Over limit input(+) and Over limit input (-) of the Positioning unit.


Safety circuit based on external circuit

Install the safety circuit recommended by the manufacturer of the motor being used.

5.2 Before Turning ON the Power

Items to check before turning ON the power

System configuration example

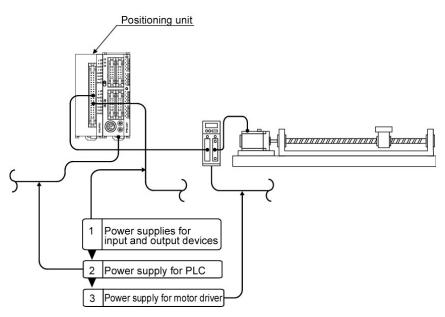
① Checking connections to the various devices

Check to make sure the various devices have been connected as indicated by the design.

- ② Checking the installation of the external safety circuit Check to make sure the safety circuit (wiring and installation of Over limit switch) based on an external circuit has been installed securely.
- ③ Checking the installation of the safety circuit based on the Positioning unit. Check to make sure the connection of the Positioning unit with Over limit switches. Check to make sure that Over limit switches have been properly installed.
- ④ Checking the procedure settings for turning ON the power supplies Make sure settings have been entered so that power supplies will be turned ON according to the procedure outlined in section 5.3.1, "Procedure for Turning ON the Power".
- (5) Checking the CPU mode selection switch Set the CPU in the PROG. mode. Setting it in the RUN mode can cause inadvertent operation.

Note:

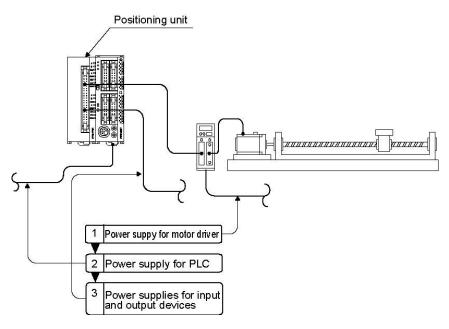
When the power to the PLC is turned ON, internal data in the shared memory will be cleared (set to zero). Check to see whether the start flag for the various operations of the positioning unit are OFF. If they are ON, a set value error will occur for the positioning unit, unless the data settings for the shared memory have been entered.


5.3 Procedure for Turning ON the Power

When turning ON the power to the system incorporating the positioning unit, the nature and statuses of any external devices connected to the system should be taken into consideration, and sufficient care should be taken that turning ON the power does not initiate unexpected movements or operations.

5.3.1 Procedure for Turning ON the Power

Procedure:

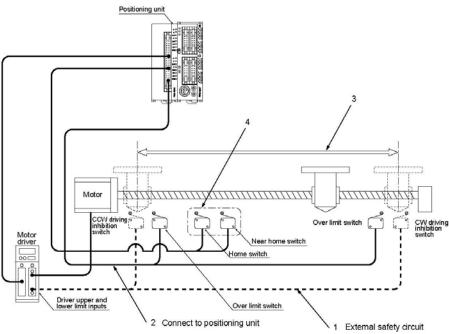

- 1. Turn ON the power supplies for input and output devices connected to the PLC (including the power supply for the line driver output or open collector output).
- 2. Turn ON the power supply for the PLC.
- 3. Turn ON the power supply for the motor driver.

5.3.2 Procedure for Turning OFF the Power

Procedure:

- 1. Check to make sure the rotation of the motor has stopped, and then turn OFF the power supply for the motor driver.
- 2. Turn OFF the power supply for the PLC.
- 3. Turn OFF the power supplies for input and output devices connected to the PLC (including the power supply for the line driver output or open collector output).

Precautions when rebooting the system


The flags of the operation memory are initialized simply by initializing the CPU, but the flags of the shared memory for the positioning unit are retained.

If the positioning unit is operated with data still in the shared memory, operation may be carried out based on any set values which have been retained, in some cases. The flags of the shared memory can be cleared when the power supply is turned OFF.

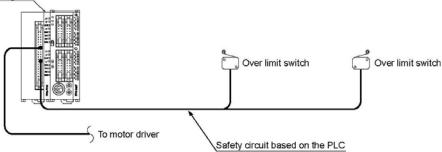
5.4 Confirming while the Power is ON

Items to check when the power is ON

System configuration example

Checking should be carried out in the four general stages described below.

5.4.1 Checking the External Safety Circuit


Check the safety circuit recommended by the manufacturer of the motor to confirm the power supply cutoff of the motor driver and other functions by turnning ON the CW/CCW driving inhibition switch of an external circuit.

5.4.2 Checking the Safety Circuit based on Positioning Unit

Procedure:

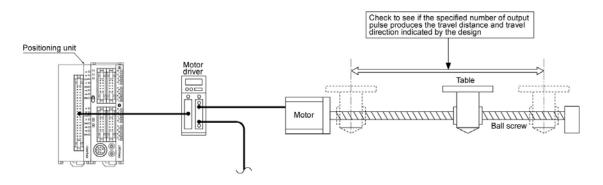
- Using forced operation of Over limit switch for the external safety circuit of the positioning unit, check to see if the Over limit input is being properly taken into the positioning unit. Whether or not Over limit input is taken can be confirmed by the input flag. In addition, the Over limit input valid logics can be changed using the control code in the user program.
- 2. If necessary, input a program to start the JOG operation. Then operate the over Over limit input forcibly to check whether the motor will stop.
- 3. Using the JOG operation, check to see if the Over limit switch is functioning properly.

Positioning unit

5.4.3 Checking the Rotation and Travel Directions, and the Travel Distance

Procedure:

1. Check to see if the directions of rotation and travel are correct using the JOG operation or the automatic acceleration/deceleration.


Points to check

The direction of rotation is determined by the driver wiring, the settings of the positioning unit shared memory control code and the program setting. At the back of the unit, and the data set in the program.

2. Check to see if the specified number of pulses produces the travel distance indicated by the design.

Points to check

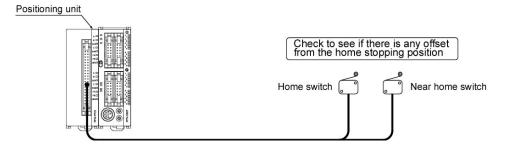
The travel distance is determined by the ball screw pitch, the reduction gear ratio, the electronic multiplication ratio of the driver, the number of pulses specified in the program, and other factors.

5.4.4 Checking the Operation of the Near Home Switch and Home Switch

Procedure:

- 1. Using forced operation of the home input and near home input, check to make sure the operation display LEDs on the positioning unit light. At the same time, using programming tools, monitor the X_6 and X_7 flag (When X_6 is ON, the home input is properly done. When X_7 is ON, the near home input is properly done.), and check LEDs light.
- 2. Input the home return program, and actually carry out a home return to check if near home input produces deceleration.

Points to check

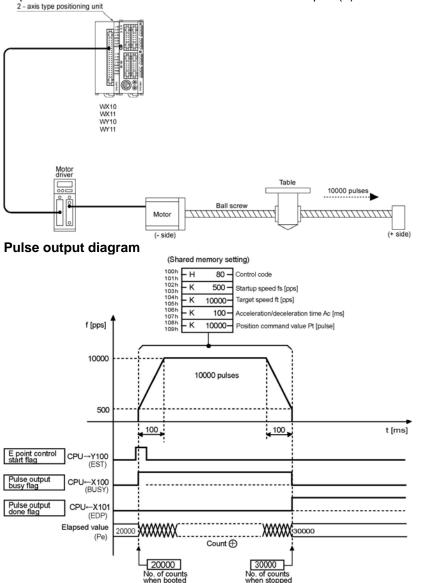

The input valid logic for the home input and near home input is determined by the control codes of the program.

3. Using repeated JOG operation and home return operation, check to make sure the table stops properly at the home position, with no offset.

Points to check

There may be times when near home input, the home input position, and the return speed cause offset from the home position.

4. If the table does not stop precisely at the home position, either change the position of the near home input, or reduce the home return speed, so that the table stops precisely at the home position.


Chapter 6

E Point Control: Single - Speed Acceleration / Deceleration

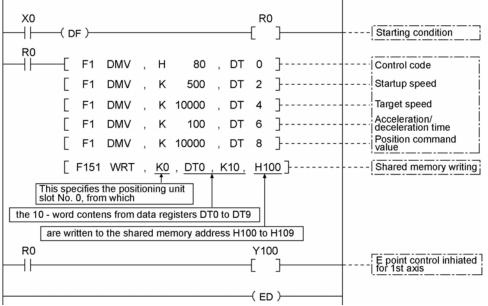
6.1 Sample Program

6.1.1 Increment (Relative Value Control): Plus (+) Direction

For this control, the "Increment" method of travel amount setting is used, and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Operations of the various flag

The pulse output busy flag (X100) goes ON when E point control is initiated, and goes OFF when pulse output is completed.

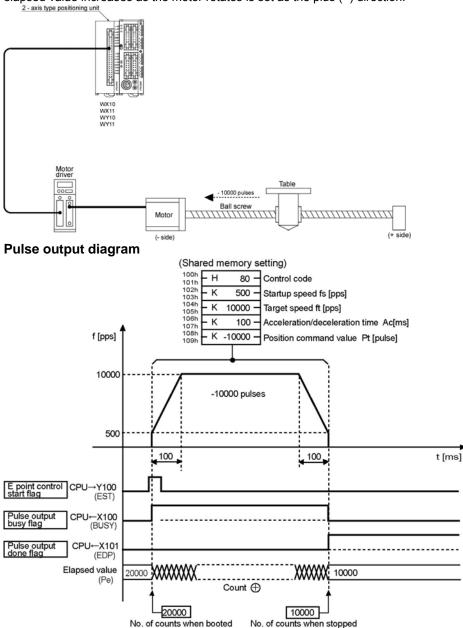

The pulse output done flag (X101) goes ON when pulse output is completed, and is maintained until the next E point control, P point control, JOG operation, JOG positioning operation, home return, or pulser input enabled status is initiated.

The elapsed value is stored as the absolute value in the counter in the positioning unit.

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H80 Note: <increment linear<br="" method,="">acceleration/deceleration></increment>	Refert to page 16-7.
Startup speed (pps)	K500	K0 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Set a value larger than the startup speed.
Acceleration/deceleration time (ms)	K100	K0 to K32,767
Position command value (pulse)	K10000	K-2,147,483,648 to K2,147,483,647

Note: If the limit error occurs, set H0 as the limit input valid logic can be changed.

Program


Precautions concerning the program

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

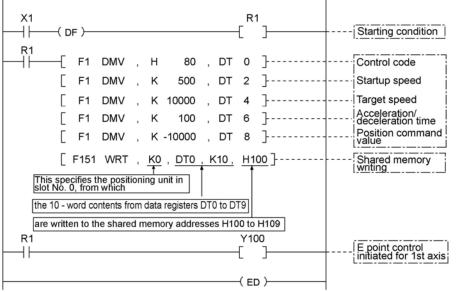
- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation,home return, and other types of control. These should not be overwritten by other conditions.
- -If the values for the startup speed, the target speed, the acceleration/deceleration time, or the position command value exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.

6.1.2 Increment (Relative Value Control): Minus (-) Direction

For this control, the "Increment" method of travel amount setting is used, and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Operations of the various flag

The pulse output busy flag (X100) goes ON when E point control is initiated, and goes OFF when pulse output is completed.


The pulse output done flag (X101) goes ON when pulse output is completed, and is maintained until the next E point control, P point control, JOG operation, JOG positioning operation, home return, or pulser input enabled status is initiated.

The elapsed value is stored as the absolute value in the counter in the positioning unit.

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H80 Note: <increment linear<br="" method,="">acceleration/deceleration></increment>	Refer to page 16-7.
Startup speed (pps)	K500	K0 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Set a value larger than the startup speed.
Acceleration/deceleration time (ms)	K100	K0 to K32,767
Position command value (pulse)	K-10000	K-2,147,483,648 to K2,147,483,647

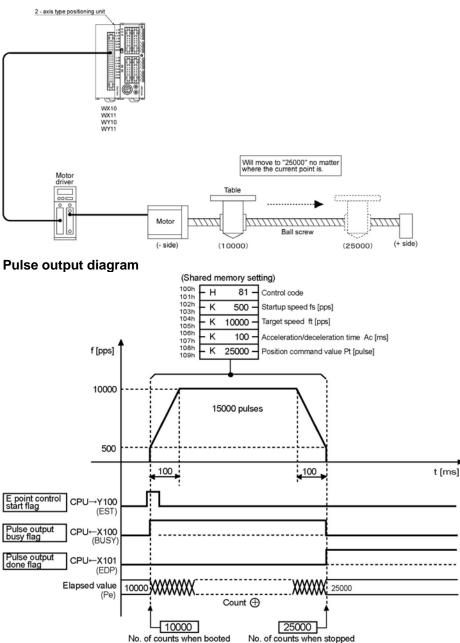
Note: If the limit error occurs, set H0 as the limit input valid logic can be changed.

Program

Precautions concerning the program

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

-The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home returns, and other types of control. These should not be overwritten by other conditions.


-If the values for the startup speed, the target speed, the acceleration/deceleration specified, a set value error will occur, and operation cannot be initiated.

-The number of the startup flag varies depending on the number of axes the unit has, and the installation position.

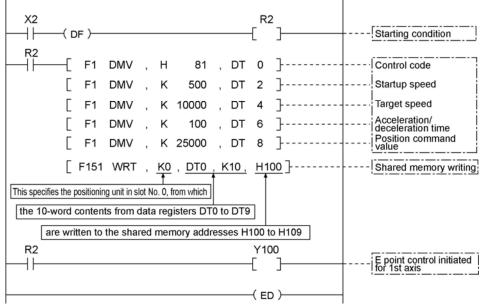
-The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.

6.1.3 Absolute (Absolute Value Control)

For this control, the "Absolute" method of travel amount setting is used, and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Operations of the various flag

The pulse output busy flag (X100) goes ON when E point control is initiated, and goes OFF when pulse output is completed.


The pulse output done flag (X101) goes ON when pulse output is completed, and is maintained until the next E point control, P point control, JOG operation, JOG positioning operation, home return, or pulser input enabled status is initiated.

The elapsed value is stored as the absolute value in the counter in the positioning unit.

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H81 Note: <absolute linear<br="" method,="">acceleration/deceleration></absolute>	Refer to page 16-7.
Startup speed (pps)	K500	K0 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Set a value larger than the startup speed
Acceleration/deceleration time (ms)	K100	K0 to K32,767
Position command value (pulse)	K25000	K-2,147,483,648 to K2,147,483,647

Note: If the limit error occurs, set H1 as the limit input valid logic can be changed.

Program

Precautions concerning the program

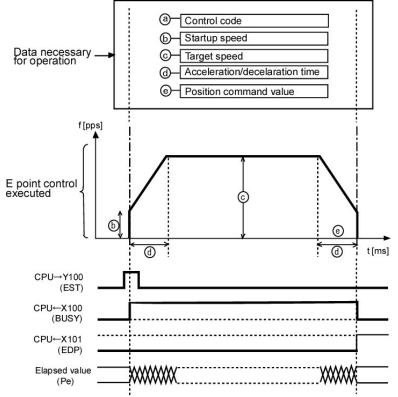
When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

-The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home returns, and other types of control. These should not be overwritten by other conditions.

- -If the values for the startup speed, the target speed, the acceleration/deceleration time, or the position command value exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.

-The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.

6.2 Flow of E Point Control Operation


E point control: Single - speed acceleration/deceleration

When the E point control startup relay (EST) is turned ON, acceleration/deceleration control is carried out automatically at a single speed, in accordance with the specified data table.

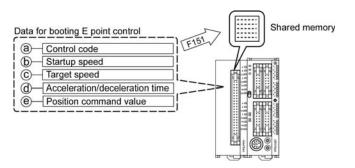
When is mounted in slot 0

Operation example

When the flag for E point control (Y100) is turned ON, acceleration/deceleration is carried out in accordance with the settings, and the table travels and stops.

When Y100 is set to ON in the program, the motor of the first axis begins accelerating. X100 is a Pulse output busy flag (BUSY) that indicates that the operation is in progress, and X101 is a Pulse output done flag (EDP) that indicates that the operation is done. The EDP flag remains ON until a request for another operation is received.

Data necessary for settings

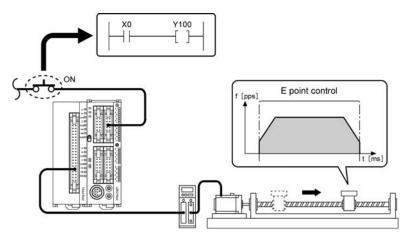

The following data items must be written to the specified addresses in the shared memory. For repeating the same operation, the re-setting is not necessary. If the control code is not changed, resetting per startup is not necessary as its settings are retained by the one-time writing after the positioning unit power supply is turned ON.

Operation is determined by these five types of data.

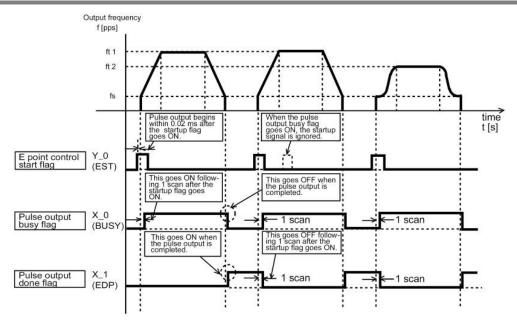
- -Control code
- -Startup speed
- -Target speed
- -Acceleration/deceleration time
- -Position command value

Operation steps Step 1: Preparatory stage

The data required for operation is transferred to the shared memory in advance.


Step 2: Executing the operations

Operation begins when the flag Y100 for E point control is turned ON.


The control code determines whether S acceleration/deceleration or linear acceleration/deceleration is used.

Acceleration is carried out from the startup speed to the target speed, and then the speed slows to the startup speed.

This amount of travel is determined by the position command value.

6.3 Operation of the Input and Output Before and After E Point Control

E point control start flag(Y_0)

- 1. E point control is initiated based on the parameters written to the positioning unit.
- E point control is not initiated during the time that the pulse output busy flag (X_0) is ON. (It is already initiated.)
- 3. This is reset when the power supply is turned OFF.

Pulse output busy flag(X_0)

- 1. This goes ON with the next scan after E point control has been initiated, and goes OFF when the pulse output is completed.
- Operation cannot be shifted to any other operation while this signal is ON (except for a forced stop and a deceleration and stop).
- 3. This is reset when the power supply is turned OFF.
- -This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and home return. (except for a pulser input enabled operation).

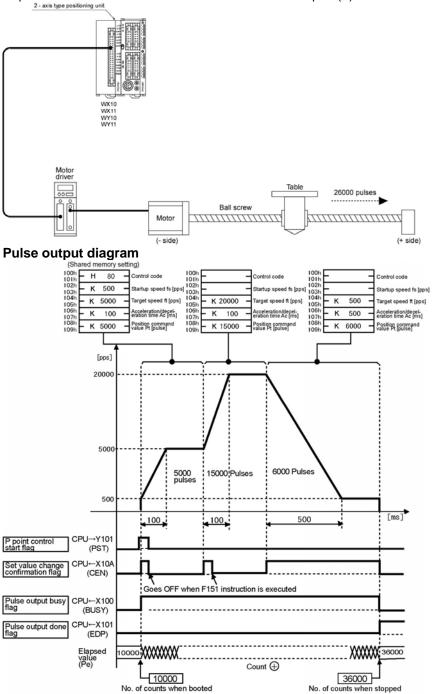
Pulse output done flag(X_1)

- This goes ON when the pulse output is completed, and is maintained until the next E point control, P point control, JOG operation, JOG positioning operation, home return, or pulser input enabled status is initiated.
- 2. This is reset when the power supply is turned OFF.
- -This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and pulser input enabled operation.

6.4 Operation at Over limit Input

E point control operation is as follows when Over limit input(+) and Over limit input(-) is ON.

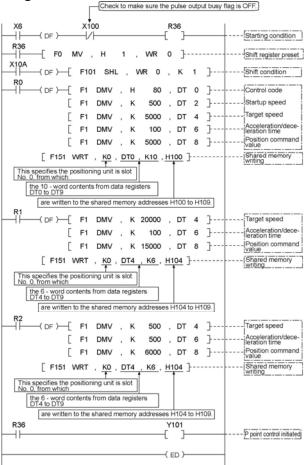
Condition	Direction	Limit status	Operation
		Over limit input (+) ON	Table not to move,
	Forward		Limit error occurs.
	Torward	Over limit input (-) ON	Table not to move,
When E point control			Limit error occurs.
is turned ON	Reverse	Over limit input (+) ON	Table not to move,
			Limit error occurs.
		Over limit input (-) ON	Table not to move,
			Limit error occurs.
	Forward	Over limit input (+) ON	Table stops, Limit error
During E point control operation	Torward		occurs.
	Reverse	Over limit input (-) ON	Table stops, Limit error
	11676136		occurs.


Chapter 7

P Point Control: Multi - Stage Acceleration / Deceleration

7.1 Sample Program

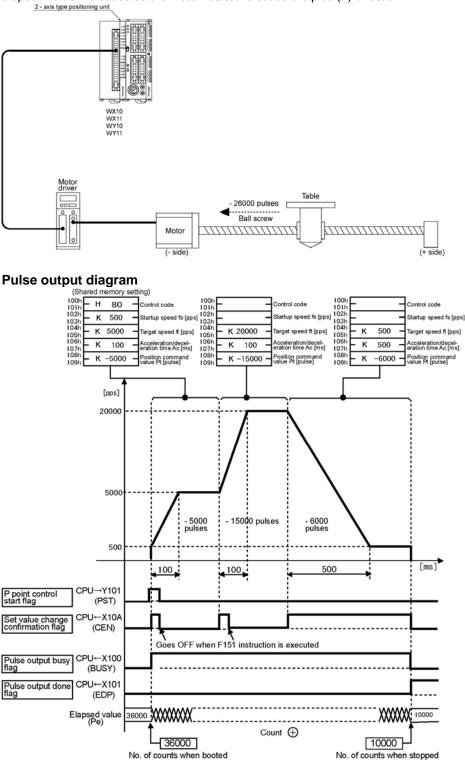
7.1.1 Increment (Relative Value Control): Plus (+) Direction


For this control, the "Increment" method of travel amount setting is used, and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Control parameter	Set values in sample program example			Range of acceptable settings	
setting content	1st speed	2nd speed	3rd speed	Range of acceptable settings	
Control code	H80 Note: Increment method, Linear acceleration/ deceleration	The same as left	The same as left	Refer to page 16-7	
Startup speed (pps)	K500	The same as left	The same as left	K0 to K4,000,000	
Target speed (pps)	K5000	K20000	K500	K1 to K4,000,000 The target speed for the first speed should be set to a value larger than the startup speed.	
Acceleration/deceler ation time(ms)	K100	K100	K500	K0 to K32,767	
Position command value (pulse)	K5000	K15000	K6000	K-2,147,483,648 to K2,147,483,647	

Note: If the limit error occurs, set H0 as the limit input valid logic can be changed.

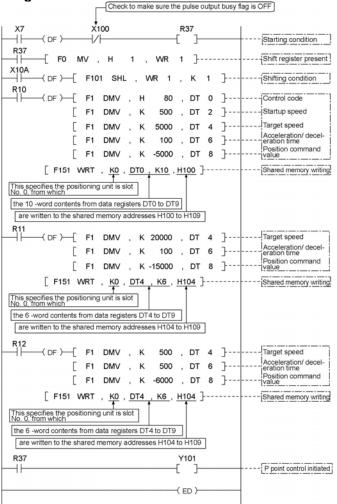
Program



Precautions concerning the program

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

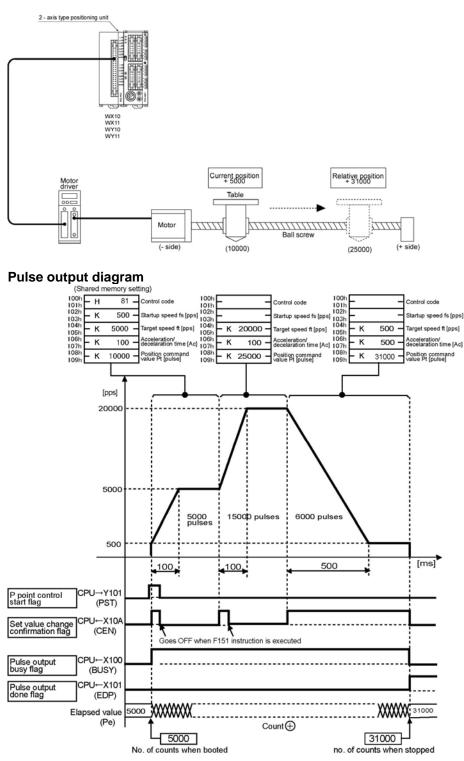
7.1.2 Increment (Relative Value Control): Minus (-) Direction


For this control, the "Increment" method of travel amount setting is used, and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Control parameter	Set values in sample program example			Denne of eccentable actions
setting content	1st speed	2nd speed	3rd speed	Range of acceptable settings
Control code	H80 Note: Increment method, Linear acceleration/ deceleration	The same as left	The same as left	Refer to page 16-7.
Startup speed (pps)	K500	The same as left	The same as left	K0 to K4,000,000
Target speed (pps)	K5000	K20000	K500	K1 to K4,000,000 The target speed for the first speed should be set to a value larger than the startup speed.
Acceleration/ deceleration time(ms)	K100	K100	K500	K0 to K32,767
Position command value (pulse)	K-5000	K-15000	K-6000	K-2,147,483,648 to K2,147,483,647

Note: If the limit error occurs, set H0 as the limit input valid logic can be changed.

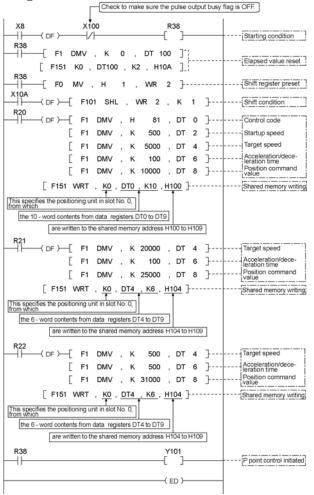
Program



Precautions concerning the program

When Over limit switch (+) and Over limit switch (-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

7.1.3 Absolute (Absolute Value Control)


For this control, the "Absolute" method of travel amount setting is used, and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Control parameter setting	Set values in s	ample progran	n example	Range of acceptable settings
content	1st speed	2nd speed	3rd speed	Range of acceptable settings
Control code	H81 Note: Absolute method, Linear acceleration/ deceleration	The same as left	The same as left	Refer to page 16-7.
Startup speed (pps)	K500	The same as left	The same as left	K0 to K4,000,000
Target speed (pps)	K5000	K20000	K500	K1 to K4,000,000 The target speed for the first speed should be set to a value larger than the startup speed.
Acceleration/deceleration time (ms)	K100	K100	K500	K0 to K32,767
Position command value (pulse)	K10000	K25000	K31000	K-2,147,483,648 to K2,147,483,647

Note: If the limit error occurs, set H1 as the limit input valid logic can be changed.

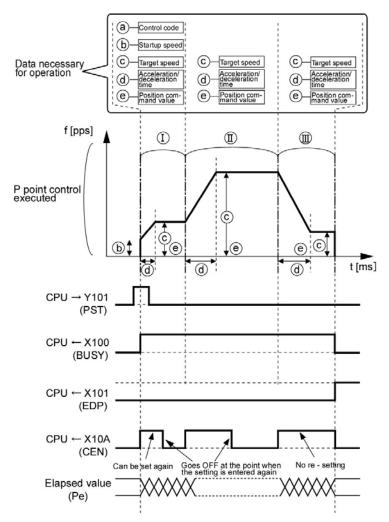
Program

Precautions concerning the program

When Over limit switch (+) and Over limit switch (-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the limit switch connection.

7.2 Flow of P Point Control Operation

P point control: Multi - stage acceleration/deceleration


-When the flag for initiating P point control (Y_1) is turned ON, acceleration/deceleration control is carried out repeatedly, in accordance with the specified data table, and then the operation stops. -Multiple accelerations/decelerations can be specified between starting and stopping. -Sin curve, Secondary curve, Cycloid curve and Third curve can be selected for S

acceleration/deceleration can also be selected.

-The acceleration/deceleration time can be specified separately for each travel point.

When is mounted in slot 0 Operation example

When the flag for initiating P point control (Y41) is turned ON, acceleration/deceleration is carried out repeatedly in accordance with the settings.

When Y101 is set to ON in the program, the motor of the first axis begins accelerating. X100 is a Pulse output busy (BUSY) flag that indicates that operation is in progress, while X101 is a Pulse output done (EDP) flag that indicates that operation has been completed. After operation has been completed, the EDP flag remains ON until the next operation request is issued.

Data necessary for settings

As shown below, data items must be written to the specified addresses in the shared

memory, in the order in which operations are to be executed. In the illustration below, the operations and processing of the P point control consists of sections I to III are explained.

Section I :

Operation is determined by these five types of data.

- -Control code
- -Startup speed
- -Target speed
- -Acceleration/deceleration time
- -Position command value

Section II and III :

Operation is determined by these three types of data.

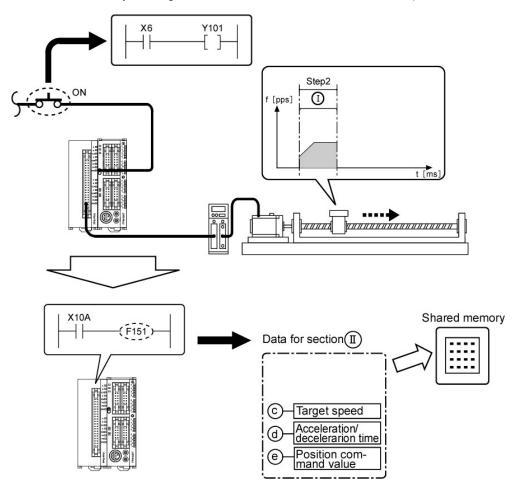
-Target speed

- -Acceleration/deceleration time
- -Position command value

Operation steps Step 1: Preparatory stage The data required for section I of the operation is transferred to the shared memory in advance. Data for section (I) ----(a) Control code (b) Startup speed C Target speed Acceleration/dece-

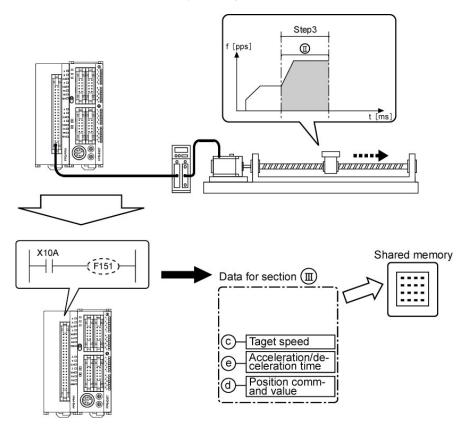
(d

e

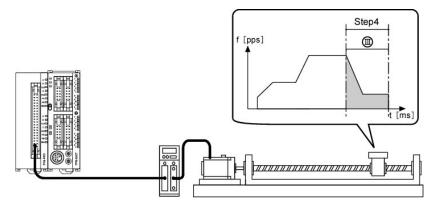

leration time Position command

value

Shared memory

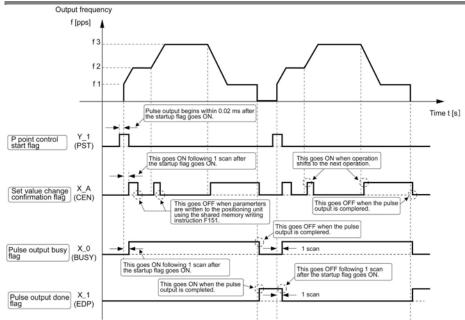

Step 2: Executing the operation of Section I

Operation begins when the flag Y101 for P point control start is turned ON. (At this point, X10A goes ON. When X10A goes ON, the data for the operation of section II is transferred to the shared memory. X10A goes OFF after the data has been transferred.)


Step 3: Executing the operation of Section II

When the operation of section I is completed, operation shifts to section II. (At this point, X10A goes ON. When X10A goes ON, the data for the operation of section III is transferred to the shared memory. X10A goes OFF after the data has been transferred.)

Step 4: Executing the operation of Section III


When the operation of section II is completed, operation shifts to section III.

Step 5: Completing the operation of Section III

Because no data for the next operation is specified during the operation of section III, operation automatically stops.

7.3 Operation of the Input and Output Flag Before and After P Point Control

P point control start flag (Y_1)

- 1. P point control is initiated based on the parameters written to the positioning unit.
- 2. Control is not initiated during the time that the pulse output busy flag (X_0) is ON. (it has already been initiated).
- 3. Control is reset when the power supply is turned OFF.

Set value change confirmation flag(X_A)

- 1. This goes ON with the next scan after P point control has been initiated.
- 2. It remains ON until the next F151shared memory write instruction is executed, and the new parameter is written to the shared memory, and then goes OFF after the parameters have been written to the unit.
- 3. This is reset when the power supply is turned OFF.
- -This is used for P point control, and the user must be careful that it does not overlap other control programs. (Refer to *section 7.4.)

Pulse output busy flag (X_O)

- 1. This goes ON with the next scan after P point control has been initiated, and goes OFF when the pulse output is completed.
- 2. Operation cannot be shifted to any other operation while this signal is ON. (except for a forced stop and a deceleration and stop)
- 3. This is reset when the power supply is turned OFF.
- -This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and home return. (except a pulser input enabled operation)

Pulse output done flag (X_1)

- 1. This goes ON when the pulse output is completed, and is maintained until the next E point control, P point control, JOG operation, JOG positioning operation, home return, or pulser input enabled status is initiated.
- 2. This is reset when the power supply is turned OFF.

-This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and pulser input enabled operation.

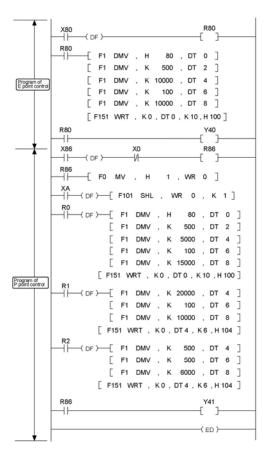
7.4 Precautions When Creating P Point Control Programs

7.4.1 Precautions Concerning the Set Value Change Confirmation Flag X_A

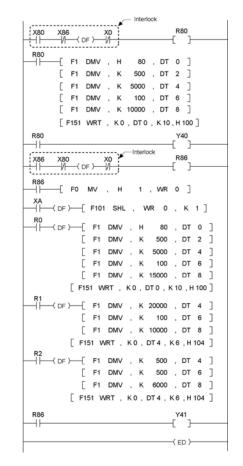
The set value change confirmation flag is turned ON and OFF at the timing noted below, so an interlock should be applied to prevent the shared memory or other data from being overwritten at the same timing.

Conditions for turning the flag from OFF to ON

-This flag goes ON when P point control or E point control is initiated.


-It goes ON at the point when the next data can be written.

Conditions for turning the flag from ON to OFF


-This flag goes OFF when pulse output is completed after P point control or E point control is initiated. -It goes OFF when the shared memory write instruction F151 is executed, and any type of data is written to the shared memory of the positioning unit.

The interlock should be applied to each circuit, so that F151 instruction cannot be executed and the set value change confirmation flag X_A cannot be rewritten under any other conditions.

P Point Control: Multi - Stage Acceleration / Deceleration

If the P point control program is booted while the E point control program has been booted and is running, the flag X10A changes, resulting in affecting the P point control program operation.

Because an interlock is in effect, the E point control program cannot be booted if the P point control program has already been booted. This prevents E point control from affecting P point control.

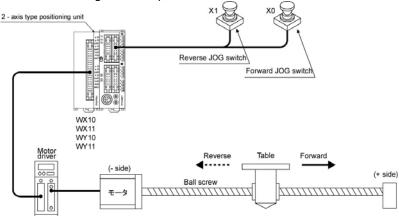
7.5 Operation at Over limit Input

P point control operation is as follows when Over limit input (+) or Over limit input (-) is ON.

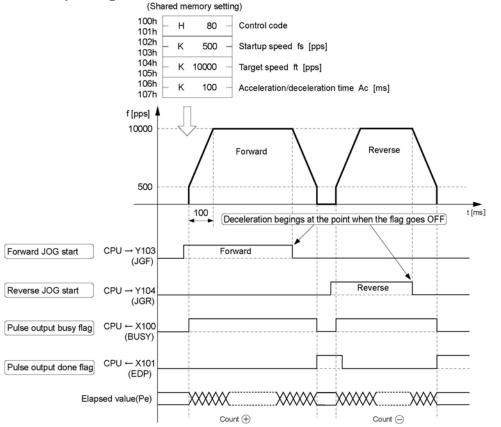
Condition	Direction	Limit status	Operation
		Over limit input (+):ON	Table not to move,
	Forward		Limit error occurs.
	1 of Ward	Over limit input (-):ON	Table not to move,
When P point		Over limit input (-).ON	Limit error occurs.
control is turned ON.		Over limit input (1):ON	Table not to move,
	Over limit input (+):ON Over limit input (-):ON	Over limit input (+).ON	Limit error occurs.
		Over limit input ():ON	Table not to move,
		Limit error occurs.	
	Forward	Over limit input (+):ON	Table stops,
During P point control operation	Forward		Limit error occurs.
	Deverse	Over limit input ():ON	Table stops,
	Reverse	Over limit input (-):ON	Limit error occurs.

Chapter 8

JOG Operation

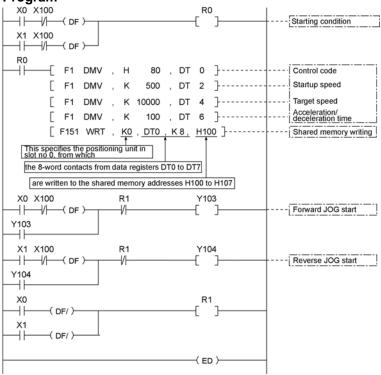

8.1 Sample Program

8.1.1 JOG Operation (Forward and Reverse)


This is the basic program for forward and reverse rotation using the external switch.

The direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction. -Pulses are output as long as the startup flag is ON in the manual mode.

-There are two flags for startup, one for forward rotation and another for reverse rotation.


Pulse output diagram

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H80 Note: Linear acceleration/deceleration	Refer to page 16-7
Startup speed (pps)	K500	K0 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Specify a value larger than the startup speed.
Acceleration/deceleration time (ms)	K100	K0 to K32,767

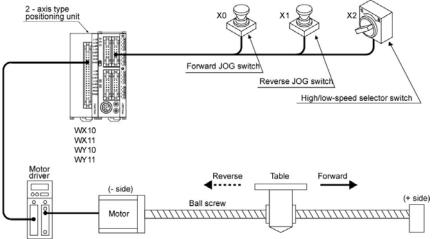
Note: If the limit error occurs, set H0 as the limit input valid logic can be changed.

Program

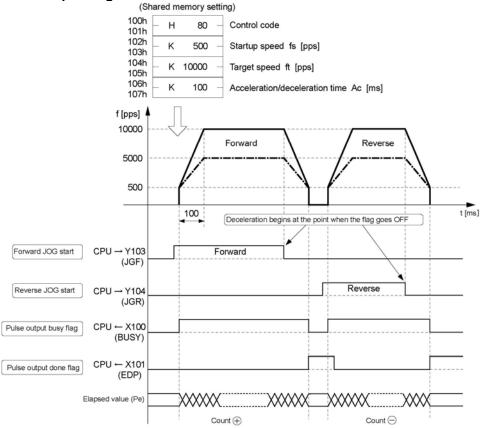
Precautions concerning the program

When Over limit switch (+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -If the values for the startup speed, the target speed, or the acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -If forward and reverse rotations are started at the same timing, forward rotation takes precedence. Also, if one or the other is started first, rotation in that direction takes precedence.
- -When re-started during deceleration, the rotation will again accelerate if in the same direction.

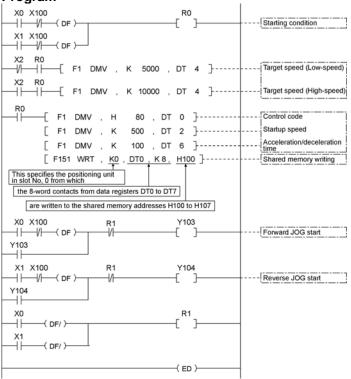

8.1.2 JOG Operation (Forward, Reverse and Speed Changes)

This is the basic program for forward and reverse rotation using the external switch.


The direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction -Pulses are output as long as the startup flag is ON in the manual mode.

-There are two flags for start, one for forward rotation and one for reverse rotation.

-In the example shown below, the selector switch is used to switch between high-speed and low - speed operation.


Pulse output diagram

Control parameter	Set values in sa example	ample program	Denne of eccentable activities	
setting content	Low – speed settings	High – speed settings	Range of acceptable settings	
Control code	H80 Note: Linear accelerati	ion/deceleration	Refer to page 16-7	
Startup speed (pps)	K500		K0 to K4,000,000	
Target speed (pps)	K5000	K10000	K1 to K4,000,000 Specify a value larger than the startup speed.	
Acceleration/ deceleration time(ms)	K100		K0 to K32,767	

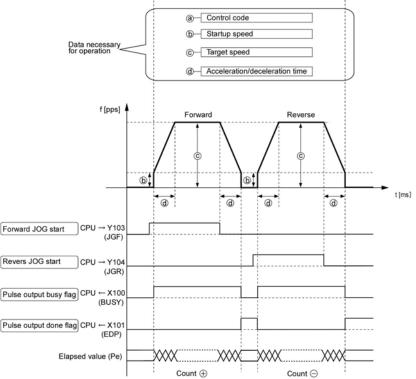
Note: If the limit error occurs, set H0 as the limit input valid logic can be changed.

Program

Precautions concerning the program

When Over limit switch (+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -If the values for the startup speed, the target speed, or the acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -If forward and reverse rotation are started at the same timing, forward rotation takes precedence. Also, if one or the other is started first, rotation in that direction takes precedence.


8.2 Sequence Flow for JOG Operation

JOG operation When is mounted in slot 0

Operation example

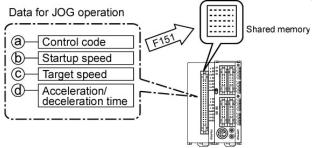
When the flag for forward rotation (Y103) (JGF) is turned ON, forward rotation begins and acceleration is initiated based on the settings. When the flag is turned OFF, deceleration takes place based on the settings, and the operation stops.

When the flag for reverse rotation (Y104) (JGR) is turned ON, reverse rotation begins and acceleration is initiated based on the settings. When the flag is turned OFF, deceleration takes place based on the settings, and the operation stops.

When Y103 is turned ON in the program above, the motor for the first axis begins to turn in the forward direction, and accelerates to the target speed. When Y103 is turned OFF, the motor decelerates and stops.

Reverse rotation can be carried out in the same way, with Y104 being turned ON and OFF. X100 is the Pulse output busy (BUSY) flag that indicates that operation is in progress, and X101 is the Pulse output done (EDP) flag that indicates that operation has been completed. The EDP flag remains on until the next operation request is issued.

Data necessary for settings

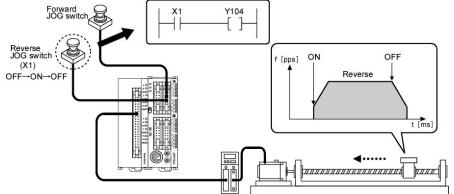

The following data must be written to the specified addresses of the shared memory. When the Control code is not changed, re-setting per startup is not necessary since the settings written once after the power ON are retained.

Operation is determined by the following four types of data.

- -Control code
- -Startup speed
- -Target speed
- -Acceleration/deceleration time


Operation steps Step 1: Preparatory stage

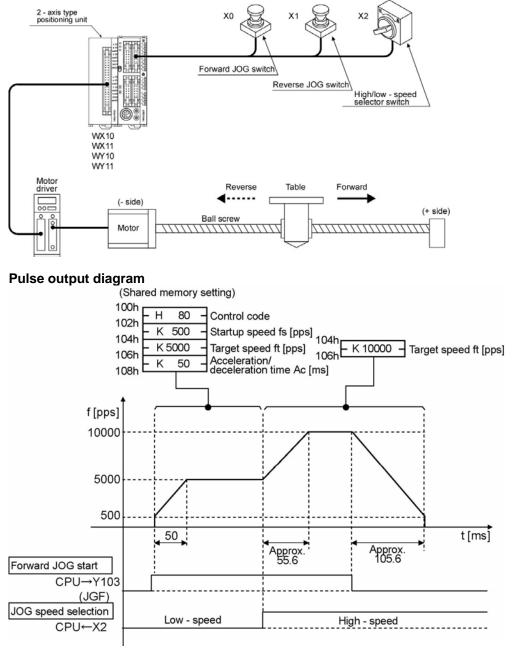
The data for operation is transferred to the shared memory ahead of time.


Step 2: Executing the operations Forward

The start flag Y103 for forward rotation is turned ON.

Reverse

The start flag Y104 for reverse rotation is turned ON.


The control codes determine whether S acceleration/deceleration or linear acceleration/ deceleration is used.

When the start flag is turned ON, acceleration takes places from the startup speed to the target speed for the acceleration/deceleration time. When the flag is turned OFF, deceleration takes place until the startup speed is reached, and operation then stops.

8.3 Changing the Speed During JOG Operation

Specifying a speed change during JOG operation

To change the speed during JOG operation, the program should be set up so that only the "Target speed" parameter in the shared memory is overwritten after JOG operation has begun.

Note: The target speed change during JOG operation is available only for Linear acceleration/deceleration. When S acceleration/deceleration is selected, the target speed changed will be ignored. Do not change the target speed during the speed down by turning ON and then OFF Forward JOG flag.

Sample Program

X0 X100 X1 X100 X1 X100 DF)	[^{R0}]	JOG start
R0 F1 DMV , F1 DMV ,	H 80 , DT 0]	Control code
F1 DMV ,	К 100 , DT 6] К 5000 , DT 4]	Acceleration/deceleration time initial speed is reached
[F151 WRT ,	<u>ко</u> , <u>DTO, кв</u> , <u>H100</u>]	Target speed (Low-speed)
This specifies the positioning us slot No. 0, from which the 8 - word contacts from dat	a registers DT0 to DT7	
	<u>d memory addresses H100 to H107.</u> DMV , K 10000 , DT4]	Target speed (High-speed)
X0 X100 	VRT , K0 , DT4 , K2 , H104] R1 Y103 	Forward JOG start
X1 X100 X1 X100 V104 V104	R1 Y104	Reverse JOG start
X0 X1 (DF/) X1 (DF/)	[^{R1}]	
	(ED)	

Acceleration/deceleration time when the speed is changed

- -If the JOG speed is changed during JOG operation, it is not possible to specify the acceleration/deceleration time when the speed changes.
- -The acceleration/deceleration time is determined by the "Rate of acceleration", which is the speed change from the startup speed to the point where the first target speed is reached, and the acceleration/deceleration time continues to change until this "Rate of acceleration" becomes constant.

Example: Acceleration/deceleration time for a sample program

- 1. Time until the low speed specification for JOG operation
- The acceleration/deceleration time specified by the program serves as the acceleration/deceleration time, just as it is.

Acceleration/deceleration time = 50ms

Acceleration rate = $\frac{5000[pps] - 500[pps]}{50[ms]} = 90[pps/ms]$

2. Time from the JOG speed of the low - speed specification to the JOG speed of the high - speed specification

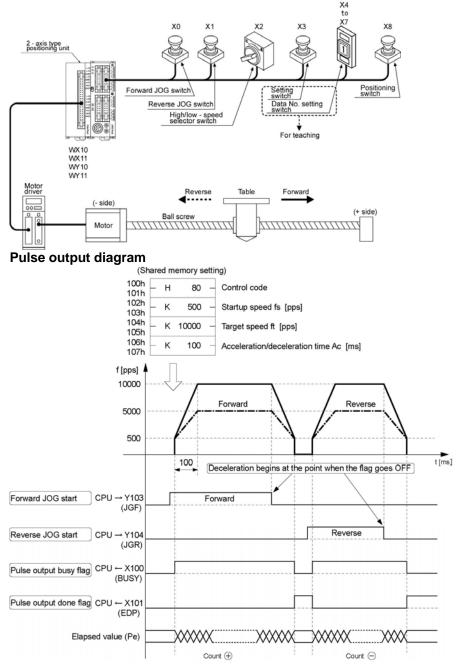
Acceleration/deceleration time = $\frac{10000[pps] - 5000[pps]}{90[pps/ms]} = Approx. 55.6[ms]$

3. Time from the JOG speed of the high - speed specification to when pulse output stops 10000[pps] - 500[pps]

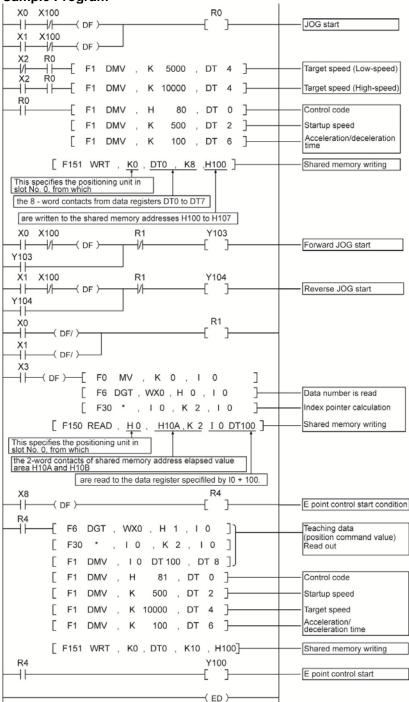
Acceleration/deceleration time = $\frac{10000[pps] - 500[pps]}{90[pps/ms]}$ = Approx. 105.6[ms]

For the sake of expedience, "pps/ms" is used as the unit for the acceleration rate.

When Over limit switch (+) and Over limit switch (-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

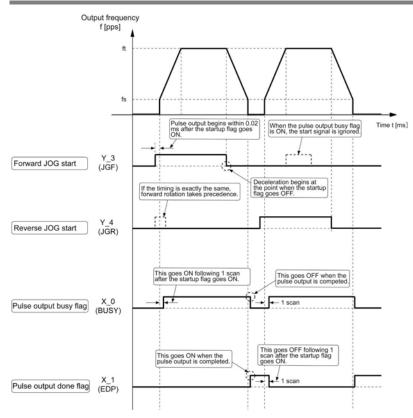

8.4 Teaching Following JOG Operation

8.4.1 Example of Teaching Settings, and Sample Program


Example of teaching operation following JOG operation

-The current position can be determined by reading the counter value stored in the shared memory of the unit after JOG operation has taken place.

-The value read at this time is the data for the absolute value.


Sample Program

Precautions concerning the program

When Over limit switch (+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

8.5 Action of the I/O Flag Before and After JOG Operation

Forward JOG flag (Y_3)/Reverse JOG flag (Y_4)

- 1. JOG operation is initiated based on the parameters written to the positioning unit.
- 2. The operation is not initiated during the time that the pulse output busy flag (X_0) is ON. (it has already been initiated).
- 3. The operation is reset when the power supply is turned OFF.
- -If the start flag for forward and reverse rotation go ON at exactly the same timing, forward rotation takes precedence.

Pulse output busy flag (X_0)

- 1. This goes ON with the next scan after JOG operation has been initiated, and goes OFF when the pulse output is completed.
- 2. Operation cannot be shifted to any other operation while this signal is ON (except for a forced stop and a deceleration and stop).
- 3. This is reset when the power supply is turned OFF.
- -This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and home return. (except for pulse input enabled operation)

Pulse output done flag (X_1)

- This goes ON when the pulse output is completed, and is maintained until the next E point control, P point control, JOG operation, JOG positioning operation, home return, or pulser input enabled status is initiated.
- 2. This is reset when the power supply is turned OFF.

-This flag is shared among E point control, P point control, JOG operation, JOG positioning operation, and pulser input enabled operation.

8.6 Operation at Over limit Input

JOG operation is as follows when Over limit input (+) and Over limit input (-) is ON . The operation is possible for the direction in opposite of the input limit.

Condition	Direction	Limit status	Operation
	Forward	Over limit input(+):ON	Table not to move, Limit error occurs.
When JOG operation is		Over limit input (-):ON	Table to move.
turned ON	Reverse	Over limit input (+):ON	Table to move.
		Over limit input (-):ON	Table not to move, Limit error occurs.
During JOG operation	Forward	Over limit input (+):ON	Table stops, Limit error occurs.
	Reverse	Over limit input (-):ON	Table stops, Limit error occurs.

8.7 Cautions on an Over Limit Switch

A over limit input valid for a Jog operation, Home return (including Home search) and Pulser input is the one logically found in the direction of the table movement. i.e. if an Over limit switch (-) is input for a movement in (+) direction or an Over limit switch (+) is input for a movement in (-) direction, the table will not stop. Please observe the followings;

- Before startup

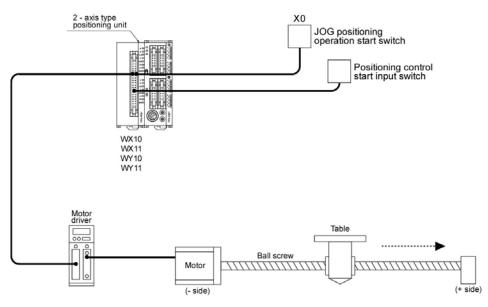
Please make sure that an Over limit switch (+) is set in the direction of the elapsed value increment and an Over limit switch (-) in the direction of the elapsed value decrement.

- When a switch is not set in the correct direction

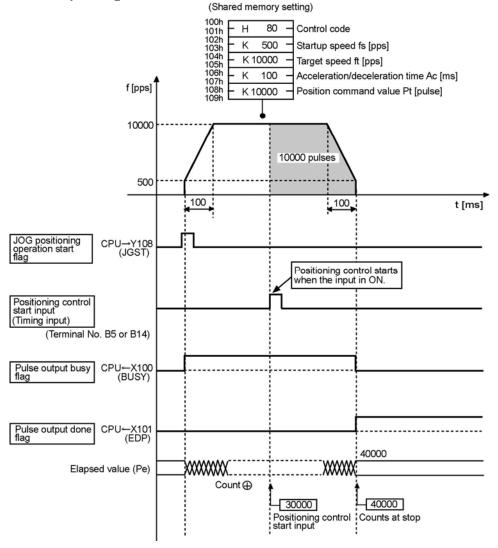
The followings might be a cause. Check your settings and correct them;

- 1) An Over limit switch, (+) or (-), is not set in a correct direction.
- 2) CW/CCW output method is set reverse for the connection of the Positioning unit and the motor driver.
- 3) A Sign input logic is set reverse for the connection of the Positioning unit and the motor driver.
- 4) The control codes are to specify the reverse direction of the rotation for the pulse output (forward or reverse) in the program.

Chapter 9


JOG Positioning Operation

9.1 Sample Program


9.1.1 Increment (Relative Value Control): Plus (+) Direction

This is a program to start the JOG positioning operation (speed control -> position control) from JOG operation by the external switch input.

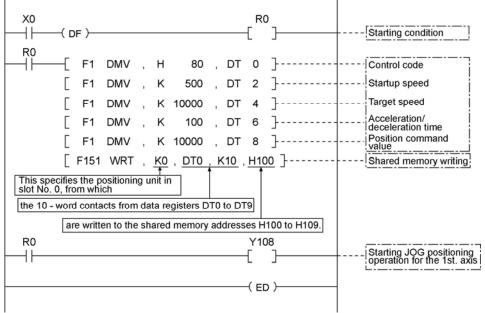
The "Increment" method is used for the travel amount setting and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Pulse output diagram

Operations of the various flag

-X100, the Pulse output busy (BUSY) flag, is turned ON during the JOG positioning operation and is turned OFF when the pulse output is completed.

-X101, the Pulse output done (EDP) flag, is turned ON when the pulse output is completed and remains until any of E point control, P point control, JOG operation, JOG positioning operation, home return or pulser input enabled operations is started up.


-The elapsed value is stored in the counter inside the positioning unit as an absolute value.

Shared memory settings

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H80 Note 1: <increment linear<br="" method,="">acceleration/deceleration></increment>	Refer to page 16-7.
Startup speed (pps)	K500	K0 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Specify a value larger than the startup speed.
Acceleration/deceleration time(ms)	K100	K0 to K32,767
Position command value (pulse)	K10000 Note 2:	K - 2,147,483,648 to K2,147,483,647

Note 1: If the limit error occurs, set H0 as the limit input valid logic can be changed. **Note 2:** A set value error occurs in Absolute method.

Program

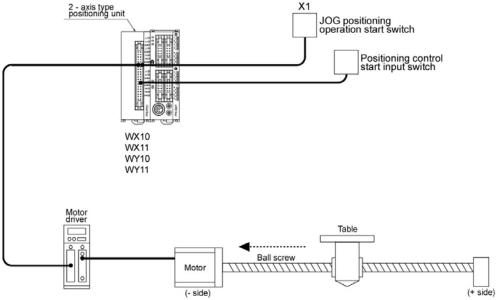
Precautions concerning the program

When Over limit switch (+) and Over limit switch (-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

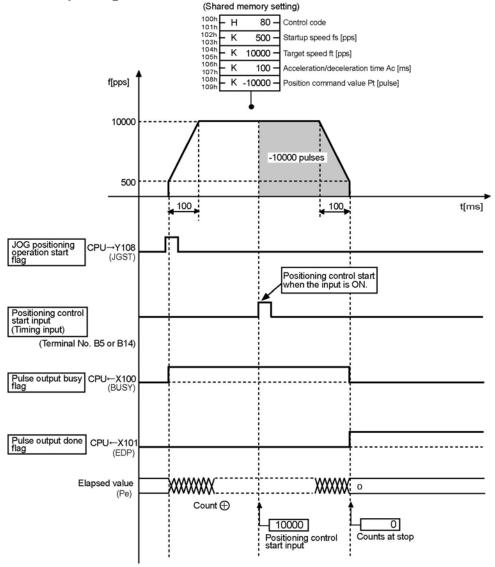
- The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation JOG positioning operation, home return, and other types of control.

These should not be overwritten by other conditions.

- -Set the position command value in the "Increment" method. A set value error occurs with the absolute value.
- If the values for the startup speed, the target speed, or the acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated.
- The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.


JOG positioning operation start input timing

When the positioning control start input (Timing input) has been already ON when turned ON the JOG positioning operation start flag (Y_8), the positioning control is immediately started. When the positioning control start input (Timing input) is turned ON during acceleration, also the positioning control is immediately started.


When the positioning control start input (Timing input) does not go ON after the JOG positioning operation started up, the pulses keep going out.

9.1.2 Increment (Relative Value Control): Minus (-) Direction

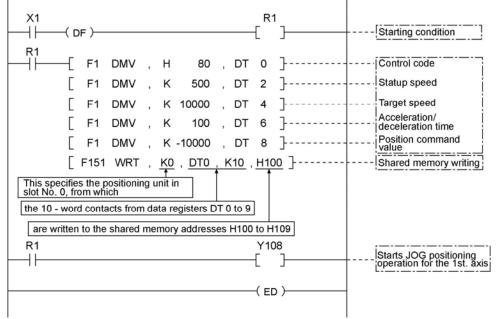
This is a program to start the JOG positioning operation (speed control -> position control) from JOG operation by the external switch input. The "Increment" method is used for the travel amount setting and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Pulse output diagram

Operations of the various flag

-X100, the Pulse output busy (BUSY) flag, is turned ON during the JOG positioning operation and is turned OFF when the pulse output is completed.

-X101, the Pulse output done (EDP) flag, is turned ON when the pulse output is completed and remains until any of E point control, P point control, JOG operation, JOG positioning operation, home return or pulser input enabled operations is started up.


-The elapsed value is stored in the counter inside the positioning unit as an absolute value.

Shared memory settings

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H80 Note 1: Increment method, Linear acceleration/deceleration	Refer to page 16-7.
Startup speed (pps)	K500	K0 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Set a value larger than the startup speed.
Acceleration/deceleration time(ms)	K100	K0 to K32,767
Position command value (pulse)	K-10000 Note 2:	K - 2,147,483,648 to K2,147,483,647

Note 1: If the limit error occurs, set H0 as the limit input valid logic can be changed. **Note 2:** A set value error occurs in Absolute method.

Program

Precautions concerning the program

When Over limit switch (+) and Over limit switch (-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -Set the position command value in the "Increment" method. A set value error occurs with the absolute value.
- -If the values for the startup speed, the target speed, position command value or the
- acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.

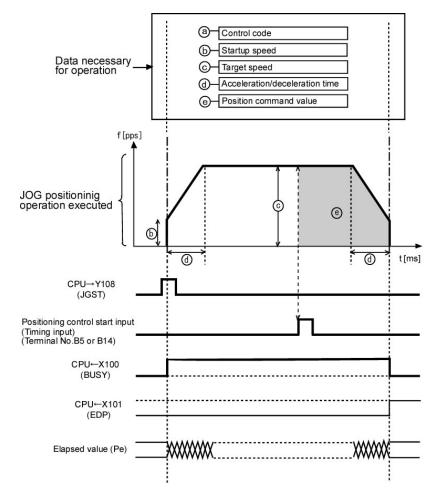
JOG positioning operation start input timing

When the positioning control start input (Timing input) has been already ON when turned ON the JOG positioning operation start flag (Y_8), the positioning control is immediately started. When the positioning control start input (Timing input) is turned ON during acceleration, also the positioning control is immediately started.

When the positioning control start input (Timing input) does not go ON after the JOG positioning operation started up, the pulses keep going out.

9.2 Flow of JOG Positioning

JOG positioning operation


-When the flag for JOG positioning operation start flag (JGST) (Y_8) is turned ON, a speed control, automatic acceleration/deceleration, in accordance with the specified data table, and the table travels for the value set by the positioning control start input.

-S Acceleration/Deceleration can be selected. (Sin curve, Secondary curve, Cycloid curve, Third curve)

When is mounted in slot 0

Operation example

When the flag for initiating JOG positioning operation is turned ON, acceleration/deceleration is carried out repeatedly, in accordance with the settings, and then the operation stops.

When Y108 is set to ON in the program, the motor of the first axis begins accelerating. X100 is a Pulse output busy (BUSY) flag that indicates that operation is in progress, while X101 is a Pulse output done (EDP) flag that indicates that operation has been completed. After operation has been completed, the EDP flag remains ON until the next operation request is issued.

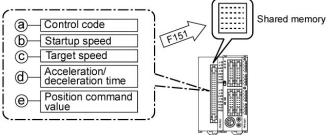
When the positioning control start input (Timing input) is turned ON, the pulse for the position command value is output.

Data necessary for settings

As shown below, data items must be written to the specified addresses in the shared memory, in the order in which operations are to be executed. However, for repeating the same operation, re-setting is not necessary.

When the control code is not changed, re-setting every startup is not necessary since the values written once after Power ON are retained.

Operation is determined by these five types of data.

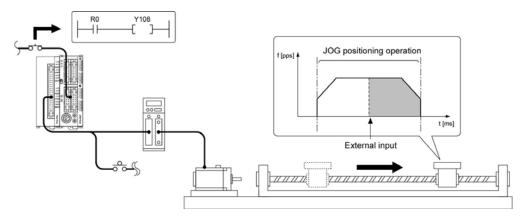

- -Control code
- -Startup speed
- -Target speed
- -Acceleration/deceleration time
- -Position command value

Operation steps Step 1: Preparatory stage

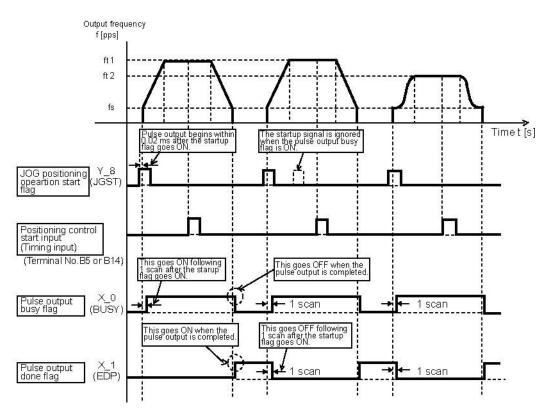
The data required for operation is transferred to the shared memory in advance.

Data for

JOG positioning operation


Step 2: Executing the operations

Operation begins when the flag Y108 for JOG positioning operation is turned ON.


The control code determines whether S acceleration/deceleration or linear acceleration/deceleration is used.

Acceleration is carried out from the startup speed to the target speed, and then the speed slows to the startup speed, and the table stops.

This amount of travel is determined by the pulse count for the position command value, which are output after the positioning control start input.

9.3 Operation of the Input and Output Flag at JOG Positioning Operation

JOG positioning operation start flag(Y_8)

- 1. JOG positioning operation is initiated based on the parameters written to the positioning unit.
- 2. JOG positioning operation is not initiated during the time that the pulse output busy flag (X_0) is ON. (already initiated.)
- 3. JOG positioning operation start flag is reset when the power supply is turned OFF.

Pulse output busy flag(X_0)

- 1. This goes ON with the next scan after JOG positioning operation has been initiated, and goes OFF when the pulse output is completed.
- 2. Operation cannot be shifted to any other operation while this signal is ON (except for a forced stop and a deceleration and stop).
- 3. This flag is reset when the power supply is turned OFF.
- -This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and home return. (except for a pulser input enabled operation)

Pulse output done flag(X_0)

- This goes ON when the pulse output is completed, and is maintained until the next E point control, P
 point control, JOG operation, JOG positioning operation, home return, or pulser input enabled status
 is initiated.
- 2. This flag is reset when the power supply is turned OFF.
- -This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and pulser input enabled operation.

9.4 Operation at Over limit Input

JOG positioning operation is as follows when Over limit input (+) or Over limit input(-) is ON. The operation is possible for the direction in opposite of the input limit.

Condition	Direction	Limit status	Operation
	Forward	Over limit input (+):ON	Table not to move, Limit error occurs.
When JOG positioning		Over limit input (-):ON	Table not to move, Limit error occurs
operation is turned ON	Reverse	Over limit input (+):ON	Table not to move, Limit error occurs
	Reverse	Over limit input (-):ON	Table not to move, Limit error occurs.
During JOG positioning operation Forward Reverse Reverse	Over limit input (+):ON	Table stops, Limit error occurs.	
	Reverse	Over limit input (-):ON	Table stops, Limit error occurs.

9.5 Special Mention

Positioning control start input (Timing input) and where to stop

The FP Σ Positioning unit performs the process in the very high speed, so that it starts counting the number of the output pulses within 15µs from when the positioning control start input (timing input) is ON during the JOG positioning operation. The time is always stable, enabling the table to stop at the specified very accurately. Since each axis is completely independent, the high-accurate stop is possible even with the multiple axes.

Role of JOG positioning start flag(Y_9)

Turn ON this flag in the program, so that the JOG positioning operation starts. Even if the Positioning control start input (Timing input) (to terminal No. B5 or B14) is OFF, this can be used for confirming the operation status.

Role of timing input monitor flag (X_D)

Turn ON this flag in the program, so that the Positioning control start input (Timing input) status can be monitored.

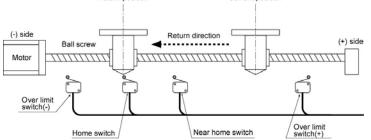
Chapter 10

Home Return

10.1 How to Use Home Return

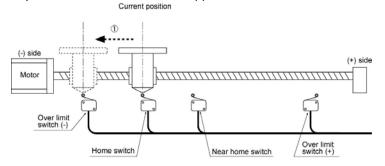
10.1.1 Return to Home Position by a Home Search

Home Search

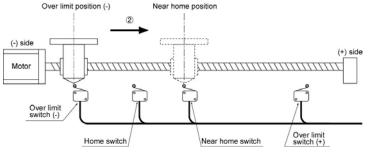

Over limit switch(+) or Over limit switch(-) when the home position is in between where the table travels or when the direction of the home return could be in the both directions, so that the Home return in the both directions will be possible.

Setting the control code Lower the 6th. bit to 1 allows a home position search.

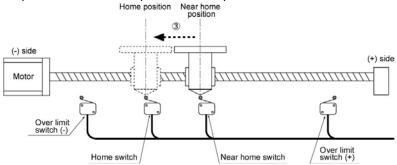
When the near home input is made during acceleration, the table automatically reverses the direction to check ON near home input and then OFF near home input. Then, the home return operation is automatically executed.


-When Near home input exists in the direction of home return

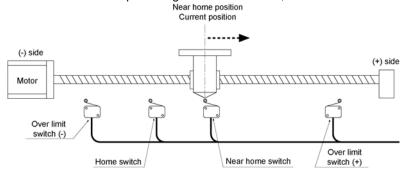
The table slows down near the near home and stops at the home position.



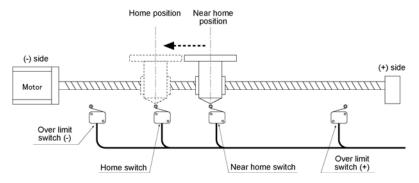
-When Near home input does not exist in the direction of home return


① Home return operation starts in the direction specified in the program. The table travels to the position where Over limit switch(-) is made.

② When Over limit switch(-) is detected, the table reverses the direction. When the near home input is once turned ON and then OFF, the table slows down and turns around.



3) When the near home is detected again, the speed slows down from the target speed to the startup speed and the table stops at the home position.

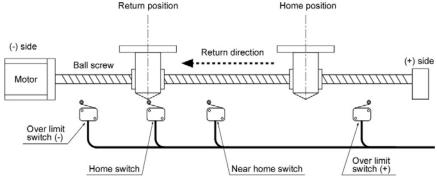


-When Near home input is ON during home return

1) Home return operation starts in the opposite direction of the one specified in the program. When the near home return input changes from ON to OFF, the table reverses its direction.

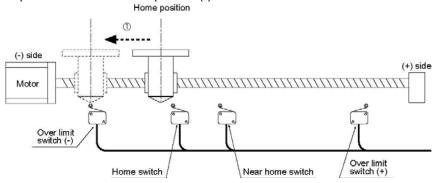
2) When the near home is detected again, the speed slows down from the target speed to the startup speed and the table stops at the home position.

Note: The above operation is also applicable when the speed does not reach the target one before the table comes to the Near home position.

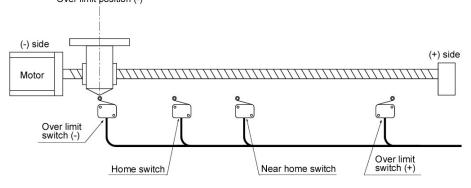

10.1.2 Home Return (Home search invalid mode)

Home search invalid mode

When the home position is in between where the table travels, the table does not reverse the direction but stops by detecting Over limit switch (+) or (-). Setting the control code Lower the 6th. bit to 0 invalidates a home position search.


-When Near home input exists in the direction of home

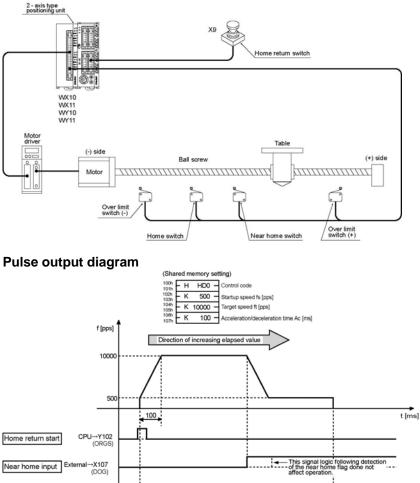
The table slows down near the near home and stops at the home position.

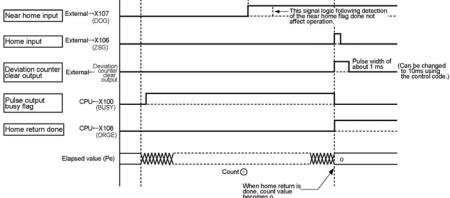


-When Near home input does not exist in the direction of home return

1) Home return operation starts in the direction specified in the program. The table travels to the position where Over limit position (-) is made.

- **Note:** If the home switch is ON when Home return is requested, the unit recognizes the table is already home-returned. Therefore, the table will not move and completes Home return.
- 2) When Over limit switch (-) is detected, the operation stops. Over limit position (-)

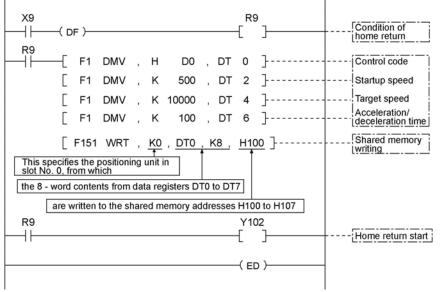



10.2 Sample Program

10.2.1 Search to home in the Minus Direction

Search to the home position are carried out in the minus direction.

The direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction. The home input is connected to the Z phase output of the motor driver, or to an external switch or a sensor.

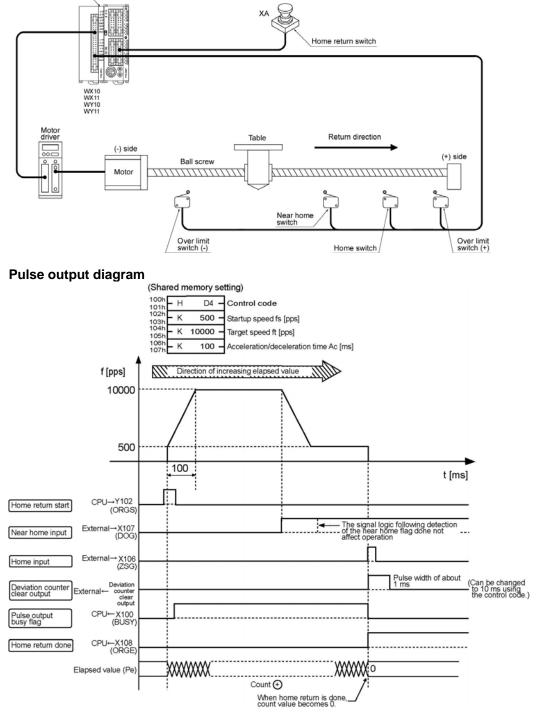

Shared	memory	settings
--------	--------	----------

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	HD0 Note: Acceleration/deceleration method: Linear acceleration/deceleration Direction of home return: - direction of elapsed value Home input logic: Input valid when the power is ON	The specified values vary depending on the method of acceleration/deceleration, the home return direction, the home input logic, and the near home input logic. (Refer to page 16-7.)
Startup speed (pps)	K500	K1 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Specify a value larger than the startup speed.
Acceleration/deceleration time(ms)	K100	K0 to K32,767

Note: Home search function is valid.

Note: If the limit error occurs, set H50 as the limit input valid logic can be changed.

Precautions concerning the program

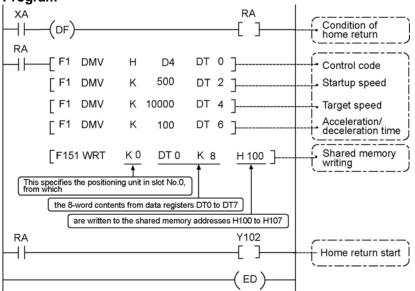

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -If the values for the startup speed, the target speed, or the acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated. Set the startup speed to 1pps or more.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -The control code settings vary depending on the logic of the near home input and the home return input which have been connected.

10.2.2 Search to the home in the Plus Direction

Search to the home position is carried out in the plus direction.

The direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction. The home input is connected to the Z phase output of the motor driver, or to an external switch or sensor.



Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	HD4 Note: Acceleration/deceleration method: Linear acceleration /deceleration Direction of home return: + direction of elapsed value Home input logic: Input valid when the power is ON	The specified values vary depending on the method of acceleration/deceleration, the home return direction, the home input logic, and the near home input logic. (Refer to page 16-7.)
Startup speed (pps)	K500	K1 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Specify a value larger than the startup speed.
Acceleration/deceleration time(ms)	K100	K0 to K32,767

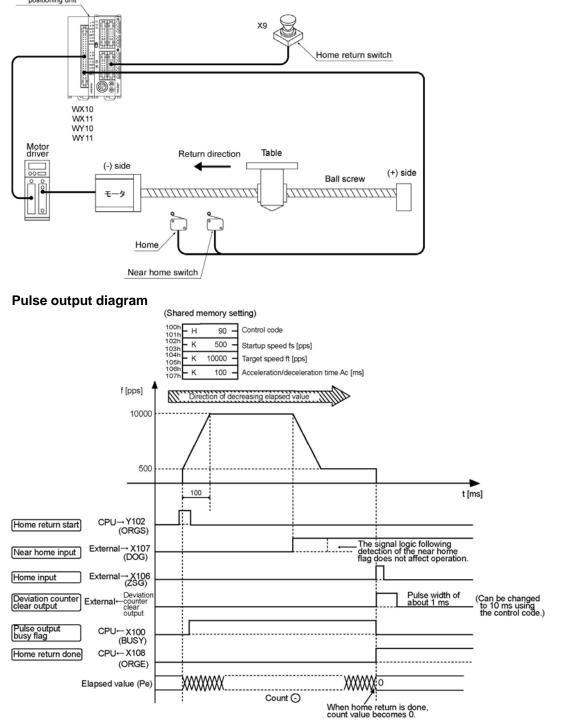
Shared memory settings

Note: Home search function is valid.

Note: If the limit error occurs, set H54 as the limit input valid logic can be changed.

Program

Precautions concerning the program

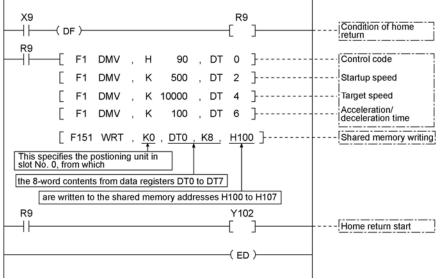

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

- -The same shared memory areas to which the various control parameters are writ ten are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home return and other types of control. These should not be overwritten by other conditions.
- -If the values for the startup speed, the target speed, or the acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated. Set the startup speed to 1pps or more.
- -The number of the startup flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -The control code settings vary depending on the logic of the home input and the near home input which have been connected.

10.2.3 Home Return in the Minus Direction (Home search invalid mode)

Returns to the home position are carried out in the minus direction.

The direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction. The home input is connected to the Z phase output of the motor driver, or to an external switch or sensor. $\frac{2}{\text{postioning unit}}$



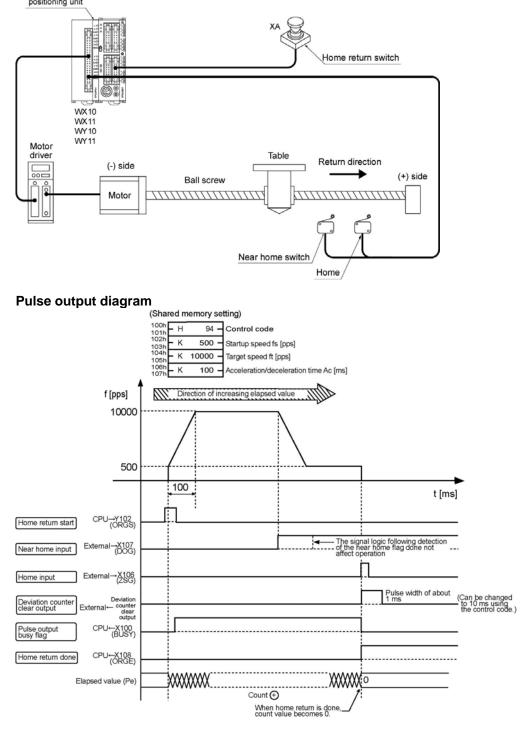
Shared	I memory s	settings	

Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H90 Note: Acceleration/deceleration method: Linear acceleration/ deceleration Direction of home return: - direction of elapsed value Home input logic: Input valid when the power is ON Near home input logic: Input valid when the power is ON	The specified values vary depending on the method of acceleration/deceleration, the home return direction, the home input logic, and the near home input logic. (Refer to page 16-7.)
Startup speed (pps)	K500	K1 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Specify a value larger than the startup speed.
Acceleration/deceleration time(ms)	K100	K0 to K32,767

Note: If the limit error occurs, set H10 as the limit input valid logic can be changed.

Program

Precautions concerning the program

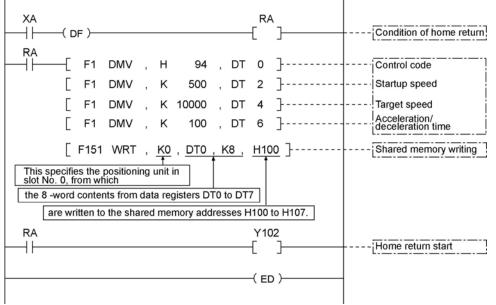

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -If the values for the startup speed, the target speed, or the acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated. Set the startup speed to 1pps or more.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -The control code settings vary depending on the logic of the home return input and the near home input which have been connected.

10.2.4 Home Return in the Plus Direction (Home search invalid mode)

Returns to the home position are carried out in the plus direction.

The direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction. The home input is connected to the Z phase output of the motor driver, or to an external switch or sensor. $\frac{2 \text{ axis type}}{2 \text{ postions unit}}$



Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H94 Note: Acceleration/deceleration method: Linear acceleration/ deceleration Direction of home return: + direction of elapsed value Home input logic: Input valid when the power is ON	The specified values vary depending on the method of acceleration/deceleration, the home return direction, the home input logic, and the near home input logic. (Refer to page 16-7.)
Startup speed (pps)	K500	K1 to K4,000,000
Target speed (pps)	K10000	K1 to K4,000,000 Specify a value larger than the startup speed.
Acceleration/deceleration time (ms)	K100	K0 to K32,767

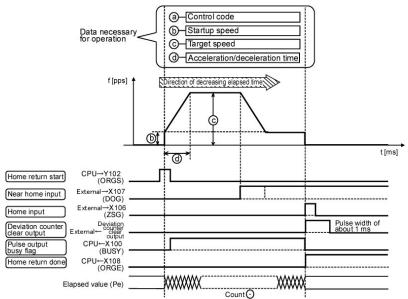
Shared memory settings

Note: If the limit error occurs, set H14 as the limit input valid logic can be changed.

Program

Precautions concerning the program

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.


- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -If the values for the startup speed, the target speed, or the acceleration/deceleration time exceed the range of values which can be specified, a set value error will occur, and operation cannot be initiated. Set the startup speed to 1pps or more.
- -The number of the start flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -The control code settings vary depending on the logic of the home return input and the near home input which have been connected.

10.3 Flow of Operation Following a Home Return

Home return When is mounted in slot 0

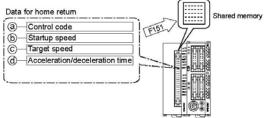
Operation example

When the startup flag is turned ON, acceleration is carried out based on the settings, until the target speed is reached. If near home input exists at that point, the speed slows to the startup speed, and then, if home input exists at that point as well, the movement stops.

When Y102 is turned ON in the program above, the motor for the first axis begins to accelerate, and continues accelerating until the target speed is reached. If there is near home input at that point, the motor decelerates to the startup speed. After deceleration has been completed, the motor stops if home input exists.

Data required for settings

-The following data must be written to the specified addresses of the shared memory.

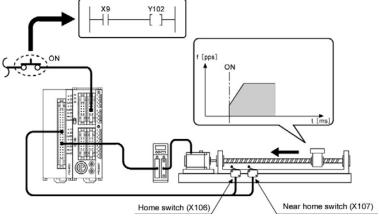

-Control code can change the home return direction, home input valid logic, near home input valid logic, with or without home search and limit input valid logic.

-Operation is determined by the following four types of data.

- · Control code
- Startup speed
- Target speed
- · Acceleration/deceleration time

Operation steps Step 1: Preparatory stage

The data for operation is transferred to the shared memory ahead of time.

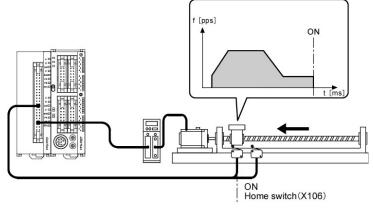


Step 2: Executing the operations

The startup flag Y102 is turned ON.

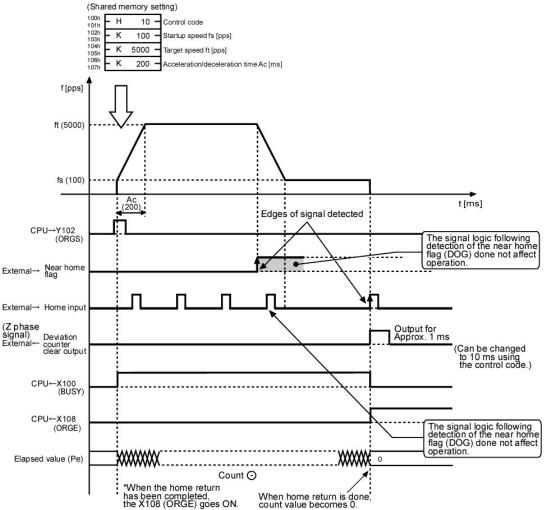
The control code determines whether S acceleration/deceleration or linear acceleration/deceleration is used.

When the startup flag is turned ON, acceleration takes places for the acceleration/deceleration time it takes to reach the target speed, and the table moves.


Step 3: Near home input

If there is near home input, the speed slows to the startup speed.

Step 4: Home input


After decelerating to the startup speed value, the movement unit stops if there is home input.

10.3.1 Operation If the Home Input is the Z Phase of the Servo Driver

When near home input is input, the speed slows, and when the starup speed has been reached, the positioning unit recognizes the first input Z phase signal as the home input signal, and stops.

When is mounted in slot 0

Note:

Z phase signals input during deceleration are not viewed as home input signals. Deceleration continues without stopping until the startup speed is reached, and then the motor continues to rotate at the startup speed until a Z phase signal is input

Note:

When Home return is completed, the elapsed value stored in the shared memory is cleared and the deviation counter clear output signal is output for about 1ms at the same time. This output time can be changed to about 10ms using the control code.

Note:


When the home return is started at where the both of the near home and home inputs are valid, the operation will be as follows;

Home Return: does not operate.

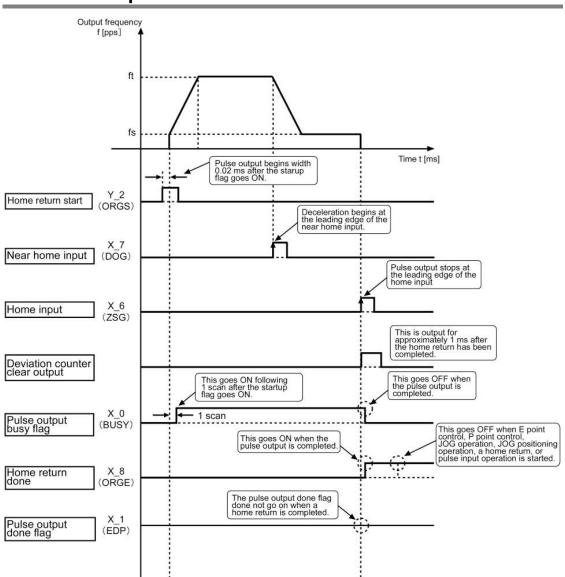
Home Search: starts home search operation.

10.3.2 Operation If the Home Input is Through an External Switch

When near home input is input, the speed slows. When the startup speed has been reached, the home input signal is input and stops.

Note:

Home input signals input during deceleration are not viewed as home input signals. Deceleration continues without stop ping until the startup speed is reached, and then the motor continues to rotate at the startup speed until a home input signal is input.


Note:

When Home return is completed, the elapsed value stored in the shared memory is cleared and the deviation counter clear output signal is output for about 1ms at the same time. This output time can be changed to about 10ms using the control code.

Note:

When the home return is started at where the both of the near home and home inputs are valid, the operation will be as follows; Home Return: does not operate.

Home Search: starts home search operation.

10.4 Action of the I/O Flag Before and After a Home Return Operation

Home return start flag (Y_2)

- 1. Home return is initiated based on the parameters written to the positioning unit.
- 2. The flag is not initiated during the time that the pulse output busy flag (X_0) is ON.
- (It has already been initiated).
- 3. The flag is reset when the power supply is turned OFF.

Near home input (X_7)

- 1. Deceleration begins when the near home switch input connected to the positioning unit becomes valid.
- 2. The leading edge of the signal is detected, so changes to flags following the input do not affect operation.

-Confirmation of the input logic is necessary. <Refer to page 10-24.>

Home input (X_6)

- 1. The table stops when the home switch input becomes valid after the near home switch input connected to the positioning unit became valid.
- 2. The leading edge of the signal is detected, so changes to flags following the input do not affect operation.

-Confirmation of the input logic is necessary. <Refer to page 10-24.>

Deviation counter clear output

1. This goes ON for approximately 1 ms or 10ms after the home return has been completed.

- This is used in systems in which a servomotor is used.

Pulse output busy flag (X_0)

- 1. This goes ON with the next scan after home return has been initiated, and goes OFF when the pulse output is completed.
- 2. Operation cannot be shifted to any other operation while this signal is ON (except for a forced stop and a deceleration and stop).
- 3. This is reset when the power supply is turned OFF.

-This flag is shared among E point control, P point control, JOG operation, JOG positioning operation and home return. (except for the pulser input operation)

Home return done flag (X_8)

- 1. This goes ON when a home return is completed, and is maintained until E point control, P point
- control, JOG operation, JOG positioning operation, a home return, or pulser input operation is started. 2. This flag is reset when the power supply is turned OFF.

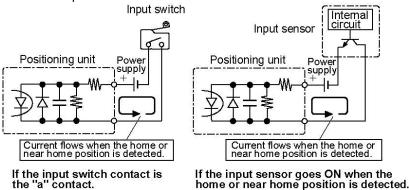
Pulse output done flag (X_1)

- 1. The pulse output done flag does not go ON when a home return is completed.
- Before a home return is started, this goes from ON to OFF when E point control, P point control, JOG operation, JOG positioning operation or pulser input operation is completed.
- 3. If this is OFF before a home return is started, it remains OFF and does not change.
- 4. This flag is reset when the power supply is turned OFF.

-This flag is common to E point control, P point control, JOG operation, JOG positioning operation and pulser input operation.

10.5 Checking the Home and Near Home Input Logic

10.5.1 When "Input Valid When Power is Supplied" is Specified


In cases like that below, when power is supplied to the input circuit of the unit, the "Power supplied" control code for the program is selected from the control code table.

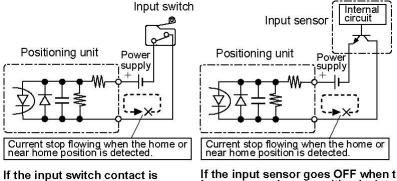
(Refer to page 16-7.)

When to specify "Input valid when power is supplied":

-If the input switch contact is the "a" contact

-If the input sensor goes ON when the home or near home position is detected -When the Z phase of the driver is connected

10.5.2 When "Input Valid When Power is not Supplied" is Specified


In cases like that below, when power is not being supplied to the input circuit of the unit, the "Power not supplied" control code for the program is selected from the control code table.

(Refer to page 16-7.)

When to specify "Input valid when power is not supplied":

If the input switch contact is the "b" contact

If the input sensor goes OFF when the home or near home position is detected

is If the input sensor goes OFF when the home or near home position is detected.

the "b" contact

10.6 Practical Use for a Home Return

10.6.1 When One Switch is Used as the Home Input

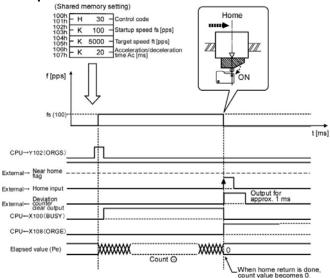
Example of usage method

- Connection

Only the home input switch is installed and connected. (No near home input switch is connected.)

- Input logic settings

The control code in the shared memory should be set as indicated below.


- Home input logic: Input exists when power is supplied.
- Near home input logic: Input exists when power is not supplied.

- Operation

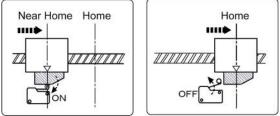
When Home return is started, the motor rotates in the direction of home return The motor rotates at the startup speed.

At this time, the near home input is already ON due to the Input logic setting. The motor stops when the home input is made.

Example:

Note:

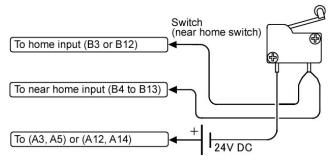
- -Home return is executed at the startup speed.
- -When the home input is connected to the Z phase output of the motor driver, one switch can not be used as the home input.
- -The above example is only applicable when the home return (in a Home search invalid mode) is executed.


Reference (Key Points):

- -Practical application of input logic. The near home input is set to "Input exists when power is not supplied", and is not connected.
- -There is no near home switch.
- -There is only home input switch.

10.6.2 When One Switch ON and OFF are assigned to Near Home Input and Home

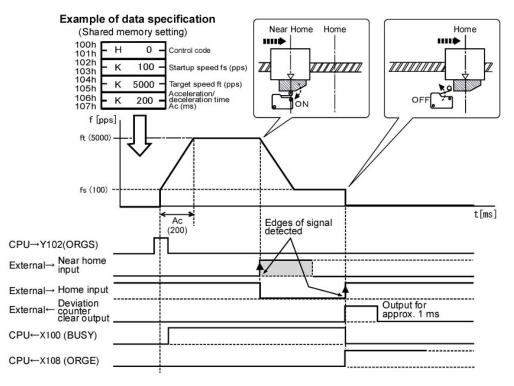
Environment available for this


The system in which the near home input switch is once turned ON and then OFF when the home return is started.

Example of usage method

-Connection

Near home input and home input are connected to the near home input switch.


-Input logic setting (When using the switch of "a" contact)

Set the control code of the shared memory for the following; Home input logic: Input Valid when power is not supplied Near home input logic: Input Valid when power is supplied

-Operation

When a home return begins, the motor rotates in the direction of the home return. When the near home input switch is turned ON, the speed slows down to the startup speed. The motor rotates the further and the near home input will be OFF.

At this point, the home input should already be ON, as a result of the input logic, and the motor stops.

Note:

The near home input should be ON for the time more than the deceleration time.

The operation of the near home input will not be affected by the signal logic change after the near home input is detected.

Reference (Key Points):

-Practical application of input logic. Reverse the logic of the near home input and the home input.

-When the switch is ON, the near home input is to be ON.

-When the switch is OFF, the home input is to be ON.

-One switch is to be connected with the home input and the near home input.

10.7 Operation at Over limit Input

Home return operation is as follows when Over limit input (+) or Over limit input (-) is ON. The operation in the direction in opposite to the input limit is possible.

Home Return (without home search)

Condition	Direction	Limit status	Operation
When Home return is turned ON	Forward	Over limit input (+):ON	Table not to move, Limit error occurs.
		Over limit input (-):ON Table to move	Table to move
	Reverse	Over limit input (+):ON	Table to move
		Over limit input (-):ON	Table not to move, Limit error occurs.
During Home return operation	Forward	Over limit input (+):ON	Table stops, Limit error occurs.
	Reverse	Over limit input (-):ON	Table stops, Limit error occurs.

Home Return (with home search)

Condition	Direction	Limit status	Operation
When Home return is	Forward	Over limit input (+):ON	Table to move
	FOIWAIU	Over limit input (-):ON Table to move	Table to move
turned ON	Reverse	Over limit input (+):ON	Table to move
		Over limit input (-):ON	Table to move
During Home return operation	Forward	Over limit input (+):ON	Automatic-reverse operation
	Reverse	Over limit input (-):ON	Automatic-reverse operation

10.8 Cautions on an Over Limit Switch

A Over limit input valid for a Jog operation, Home return (including Home search) and Pulser input is the one logically found in the direction of the table movement. i.e. if an Over limit switch (-) is input for a movement in (+) direction or an Over limit switch (+) is input for a movement in (-) direction, the table will not stop. Please observe the followings;

- Before startup

Please make sure that an Over limit switch (+) is set in the direction of the elapsed value increment and an Over limit switch (-) in the direction of the elapsed value decrement.

- When a switch is not set in the correct direction

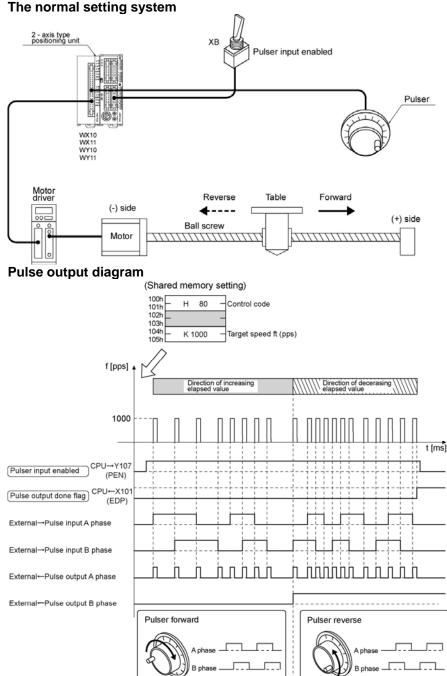
The followings might be a cause. Check your settings and correct them;

- 1) An Over limit switch, (+) or (-), is not set in a correct direction.
- 2) CW/CCW output method is set reverse for the connection of the Positioning unit and the motor driver.
- 3) A Sign input logic is set reverse for the connection of the Positioning unit and the motor driver.
- 4) The control codes are to specify the reverse direction of the rotation for the pulse output (forward or reverse) in the program.

10.9 Special Mention

The time from the home input to the pulse output stop during the home return (home search)

The FP Σ Positioning unit performs the process in the very high speed, so that it starts counting the number of the output pulses within 1µs from when the home input is ON. The time is always stable, enabling the accurate home return (home search) operation. Since each axis is completely independent, the home returns by the multiple axes at the same time are possible for the multiple-axis type.

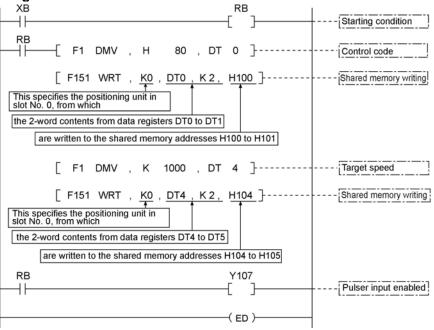

Chapter 11

Pulser Input Operation

11.1 Sample Program

11.1.1 Pulser input operation (Transfer multiple: 1 multiple setting)

The rotation direction of the motor in which the elapsed value increases is set as the plus direction, and "pulse/sign" is set as the pulse output mode.



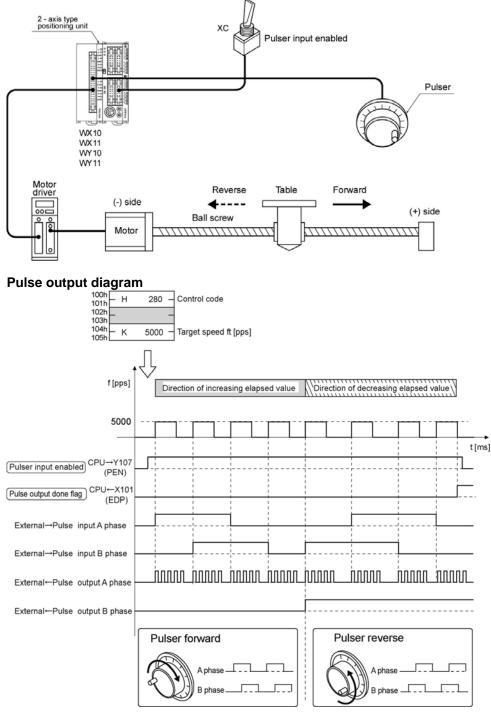
onaroa momery octange		
Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H80 Note: Multiplication ratio:×1 multiple	Refer to page 16-7.
Target speed (pps)	K1000	K1 to K4,000,000

Shared memory settings

Note: If the Over limit input error occurs, set H0 as the limit input valid logic can be changed.

Precautions concerning the program

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

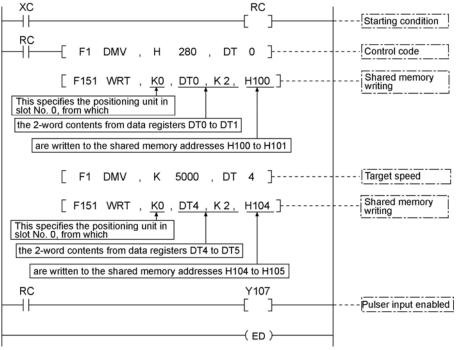

- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -If the target speed is out of the range of possible settings, a set value error will occur, and pulser input cannot be accepted.
- -The number of the startup flag varies depending on the number of axes the pulser input unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -The target speed should be specified as an appropriately large value to match the multiplication ratio.
- -If the multiplication ratio is high and the target speed is low, the next pulser input command may be received before the specified pulse output has been completed, making it impossible to obtain output of the input number of pulses.

-Do not turn ON Y_7 when using the feedback counter.

11.1.2 Pulser input operation (Transfer multiple: 5 multiple setting)

The rotation direction of the motor in which the elapsed value increases is set as the plus direction, and "pulse/sign" is set as the pulse output mode.

The normal setting system



Control parameter setting content	Set values in sample program example	Range of acceptable settings
Control code	H280 Note: Multiplication ratio:×5 multiple	Refer to page 16-7.
Target speed (pps)	K10000	K1 to K4,000,000

Shared memory settings

Note: If the limit error occurs, set H200 as the limit input valid logic can be changed.

Program

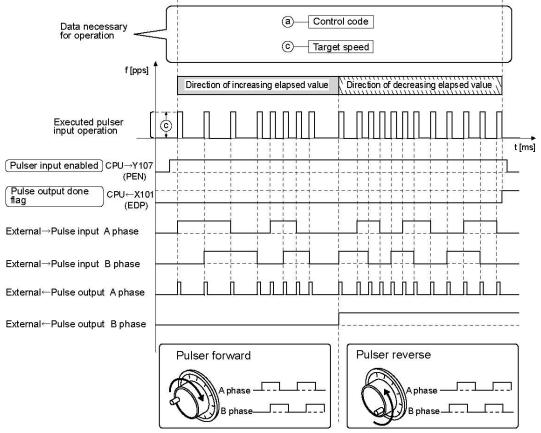
Precautions concerning the program

When Over limit switch(+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

- -The same shared memory areas to which the various control parameters are written are used for acceleration/deceleration control, JOG operation, JOG positioning operation, home return, and other types of control. These should not be overwritten by other conditions.
- -If the target speed is out of the range of possible settings, a set value error will occur, and pulser input cannot be accepted.
- -The number of the startup flag varies depending on the number of axes the unit has, and the installation position.
- -The specified slot number and shared memory address vary depending on the slot position and axis number of the positioning unit.
- -The target speed should be specified as an appropriately large value to match the multiplication ratio. -If the multiplication ratio is high and the target speed is low, the next pulser input command may be received before the specified pulse output has been completed, making it impossible to obtain output of the input number of pulses.
- -Do not turn ON Y 7 when using the feedback counter.

11.2 Sequence Flow for Pulser input operation

Pulser input operation


-A pulse generator (pulser) can be connected, and the motor can be controlled in the manual mode. Pulser signals can be input while the pulser input enabled flag (PEN) is ON.

-The user can select the number of pulses to be sent to the motor driver in relation to one pulser signal pulse (by setting the control code in the shared memory).

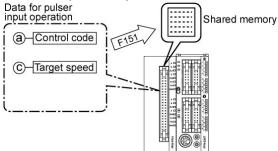
When is mounted in slot 0

Operation example

When the flag which enables pulser input operation is turned ON, the motor rotates at the specified speed, in conjunction with the pulser operation.

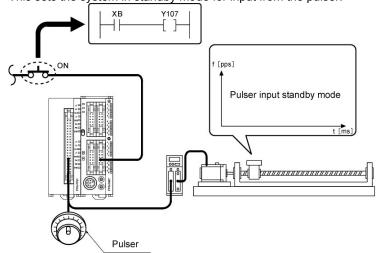
When Y107 is turned ON in the above program, the motor for the first axis waits for pulser input. If the pulser is rotated in this state, the motor rotates also.

The pulse output busy flag X100 remains OFF, and its status does not change. The pulse output done flag X101 goes OFF when Y107 goes ON.


Data necessary for settings

The following data must be written to the specified addresses of the shared memory. Operation is determined by the following two types of data.

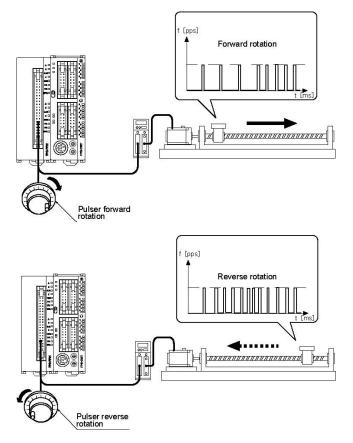
- \cdot Control code
- Target speed


Operation steps Step 1: Preparatory stage

The data required for operation is transferred to the shared memory in advance.

Step 2: Executing the operations

The input enabled flag Y107 is turned ON. This sets the system in standby mode for input from the pulser.


Forward rotation

The pulser rotates in the forward direction.

Reverse rotation

The pulser rotates in the reverse direction.

Forward rotation is the direction in which the elapsed value increases, and reverse rotation is the direction in which the elapsed value decreases. The direction in which the pulser rotates and that in which the motor rotates vary depending on how they are connected.

Reference:

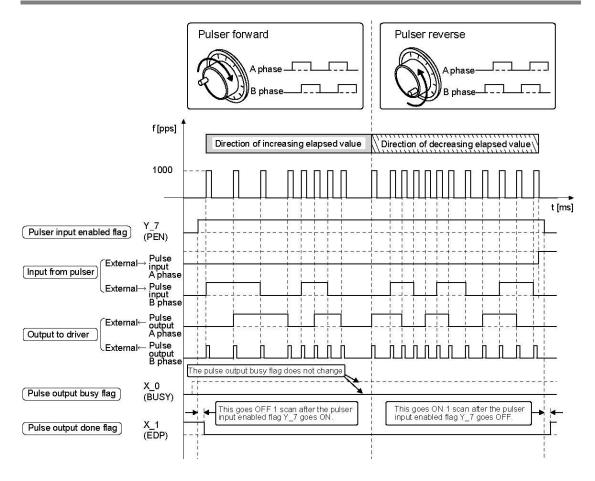
Value of the internal absolute counter during pulser input operation

The internal absolute counter counts the number of pulses output. Consequently, in the instant that pulses are being input, the number of pulses input from the pulser does not equal to the value counted by the counter.

Note:

When the input signal from the pulser is ignored

If the specified multiplication is high and the target speed is low, the next pulser input command may be received before the specified pulse output has been completed, making it impossible to obtain output of the input number of pulses.


If this happens, the target speed should be changed to an appropriate value.

Note:

The pulser input operation and the feedback counter use the same pulse input terminal. Select either. Do not turn ON Y107 when using the feedback counter.

Feedback counter and pulser input operation are available for each axis, so either can be selected respectively per each axis.

11.3 Action of the I/O Flag During Pulser Input Operation

Pulser input enabled flag (Y_7)

- 1. This is in pulser input operation status, based on the parameters written to the positioning unit.
- 2. This does not shift to enabled status while the pulse output busy flag X_0 is ON.
- 3. This flag is reset when the power supply is turned OFF.

Pulse output busy flag (X_0)

The ON/OFF status of the pulse output busy flag does not change, even if the pulser input enabled flag Y_7 goes ON.

Pulse output done flag (X_1)

- 1. This goes from ON to OFF if E point control, P point control, JOG operation, JOG positioning operation or pulser input operation is completed before pulser input operation.
- 2. This goes from OFF to ON when the pulser input enabled flag Y 7 goes OFF.
- 3. This flag is reset when the power supply is turned OFF.

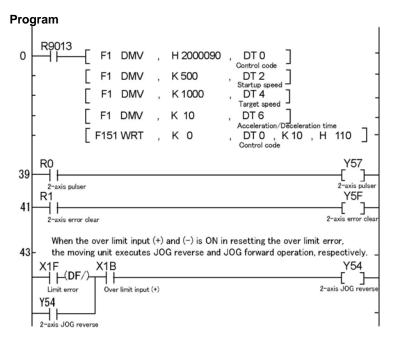
This flag is common to E point control, P point control, JOG operation, JOG positioning operation and pulser input operation.

11.4 Operation at Over limit Input

Pulser input operation is as follows when Over limit inout (+) or Over limit input(-) is ON. The operation is possible for the direction in opposite of the input limit.

Condition	Direction	Limit status	Operation
When Pulser input	Forward	Over limit input(+):ON Table not to move, Limit error occurs. Over limit input (-):ON Table to move.	Table not to move,
			Limit error occurs.
			Table to move.
operation is turned ON	Reverse	Over limit input(+):ON	Table to move.
		Over limit input (-):ON	Table not to move,
			Limit error occurs.
During Pulser input operation	Forward	Over limit input(+):ON	Table stops,
			Limit error occurs.
	Reverse	Over limit input (-):ON	Table stops,
			Limit error occurs.

Note: Pulse/Sign output mode can be started up.


When the CW/CCW output mode is set, the limit error will occur. If the error occurs, solve it using the methods as described below.

-Using the home return function

- (1) Turn ON the Error clear (Y_F) of the Over limit input (+), and then turn it OFF.
- (2) Turn ON the Home return start (Y_F) (towards the elapsed value minus (-) direction), while the Over limit input (+) is ON.

·Using the JOG operation function

- (1) Turn ON the Error clear (Y_F) of the Over limit input (+), and then turn it OFF.
- (2) Turn ON the Reverse JOG (Y_4), while the Over limit input (+) is ON.

11.5 Cautions on an Over Limit Switch

A over limit input valid for a Jog operation, Home return (including Home search) and Pulser input is the one logically found in the direction of the table movement. i.e. if an Over limit switch (-) is input for a movement in (+) direction or an Over limit switch (+) is input for a movement in (-) direction, the table will not stop. Please observe the followings;

- Before startup

Please make sure that an Over limit switch (+) is set in the direction of the elapsed value increment and an Over limit switch (-) in the direction of the elapsed value decrement.

- When a switch is not set in the correct direction

The followings might be a cause. Check your settings and correct them;

- 1) An Over limit switch, (+) or (-), is not set in a correct direction.
- 2) CW/CCW output method is set reverse for the connection of the Positioning unit and the motor driver.
- 3) A Sign input logic is set reverse for the connection of the Positioning unit and the motor driver.
- 4) The control codes are to specify the reverse direction of the rotation for the pulse output (forward or reverse) in the program.

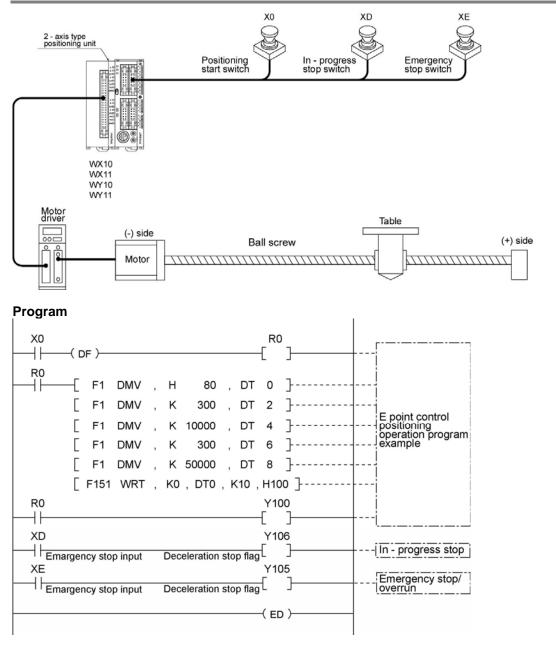
11.6 Types of Manual Pulse Generators That Can be Used

A pulse generators should be used for which the number of output pulses is "25P/R" (25 pulses per cycle).

With the "100P/R" (100 pulses per cycle) type, four pulses are output per click, and operation may not be accurate in some cases.

A line driver output type is recommended.

A transistor open collector output type or transistor output type with pull-up resistance may be used.


For detailed information about connection methods \rightarrow section 3.7

Chapter 12

Deceleration Stop and Forced Stop

12.1 Sample Program

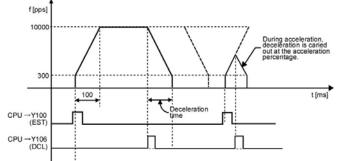
12.1.1 In - progress Stopping, Emergency Stopping

Precautions concerning the program

- -The number of the stop input flag varies depending on the number of axes that the unit has, and the position in which it is mounted.
- -If a deceleration stop or forced stop is triggered, the start flag for the various operations must be turned OFF before operation can be restarted. This content is common to E point control, P point control, home return, JOG operation, JOG positioning operation and pulser input operation.

Pulse output diagram Deceleration stop operation (In - progress stop) f [pps] 10000 300 Time t [ms] E point control start flag CPU-Y100 (EST) CPU→Y106 Deceleration stop flag (DCL) CPU←X100 Pulse output busy flag (BUSY) CPU←X101 Pulse output done flag (EDP) Forced stop operation (Emergency stop) f [pps] 10000 300 Time t [ms] CPU→Y100 E point control start flag (EST) Forced stop flag (When an emargency stop input) CPU→Y105 (EMR) CPU←X100 Pulse output busy flag (BUSY)

Pulse output done flag

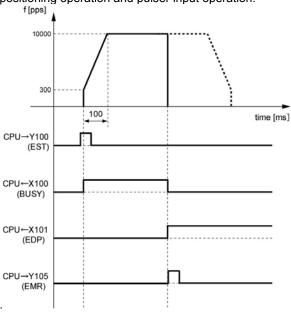

CPU←X101

(EDP)

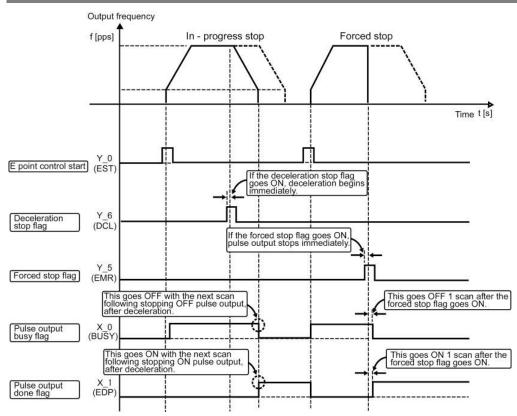
12.2 Operations for a Deceleration Stop and Forced Stop

12.2.1 Deceleration Stop

If the deceleration stop flag is turned ON during operation, the operation is interrupted, and the speed slows. When the startup speed is reached, pulse output stops. This operation is common to E point control, P point control, home return, JOG operation and JOG positioning operation. For pulser input operation, pulse output stops.



Important:


When a deceleration stop has been executed, deceleration is carried out based on the acceleration rate determined by the data specified in the shared memory area at that point, and continues until the startup speed is reached. Following that, operation stops. If the deceleration stop flag goes ON during deceleration or acceleration, deceleration is carried out at the rate of acceleration in effect at that time, and operation stops.

12.2.2 Forced Stop

If the forced stop flag goes ON during operation, pulse output stops immediately. This operation is common to E point control, P point control, home return, JOG operation, JOG positioning operation and pulser input operation.

Deceleration stop flag (Y_6)

- 1. When the deceleration stop flag goes ON, the operation in progress is interrupted, and deceleration begins.
- 2. After deceleration has begun and the speed has slowed to the startup speed, pulse output stops.
- 3. This flag is reset when the power supply is turned OFF.

Forced stop flag (Y_5)

- 1. When the forced stop flag goes ON, the operation in progress is interrupted immediately, and pulse output stops.
- 2. This flag is reset when the power supply is turned OFF.

Pulse output busy flag (X_0)

- 1. When the deceleration stop flag goes ON, this flag goes OFF when pulse output is completed.
- 2. When the forced stop flag goes ON, this flag goes OFF after 1 scan from when the flag has gone ON.
- 3. This flag is reset when the power supply is turned OFF.

Pulse output done flag (X_1)

- 1. When the deceleration stop flag goes ON, this flag goes ON when pulse output is completed.
- 2. When the forced stop flag goes ON, this flag goes ON after 1 scan from when the flag has gone ON.
- 3. This flag is reset when the power supply is turned OFF.

12.4 Precautions Concerning Stopping Operations

12.4.1 Pulse Output Done Flag Status After a Stop

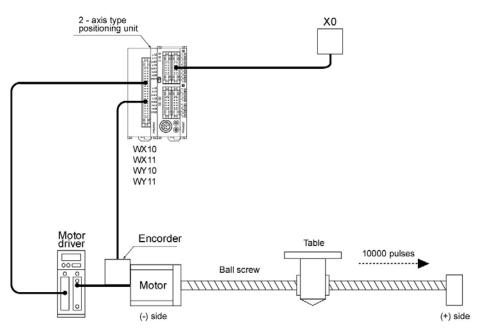
For either a deceleration stop or a forced stop, the pulse output done flag goes ON after operation has stopped. If the pulse output done flag is being used as a trigger signal for operation after positioning has been completed, the program should be set up so that operation does not proceed to the next step following a deceleration stop or a forced stop.

12.4.2 Restarting After a Stop

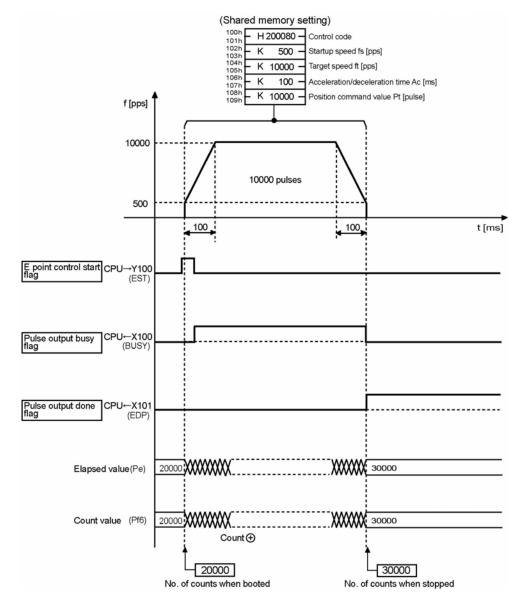
When a deceleration stop or forced stop is triggered, the start flags for all operations must be turned OFF before operation can be restarted. This operation is common to E point control, P point control, home return, JOG operation, JOG positioning operation and pulser input operation.

12.4.3 Forced Stop Elapsed Value Data

Elapsed value data in the shared memory is saved after a forced stop is applied. Under normal conditions, it is possible that a mechanical error has occurred, so after home return, we recommend positioning control start.


Chapter 13

Feedback Counter

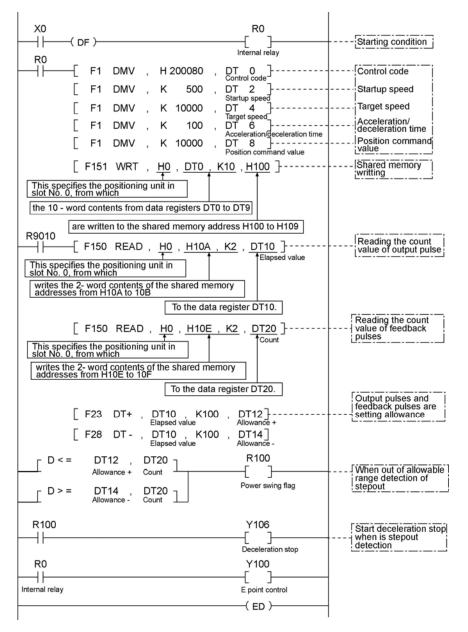

13.1 Sample Program

13.1.1 Detecting Power Swing by Comparing Feedback Count with Elapsed Value

For this control, the "Increment" method of travel amount setting is used, and the direction in which the elapsed value increases as the motor rotates is set as the plus (+) direction.

Pulse output diagram

Operations of the various flags


-Pulse output busy flag (X100) goes ON when E point control is started and goes OFF when the pulse output is completed.

-Pulse output done flag (X101) goes ON when the pulse output is completed. This remains ON until the next operation of either E point control, P point control, JOG operation, JOG positioning operation, home return or pulser input operations is started.

-The elapsed value is stored in the counter inside the positioning unit as absolute value.

Program

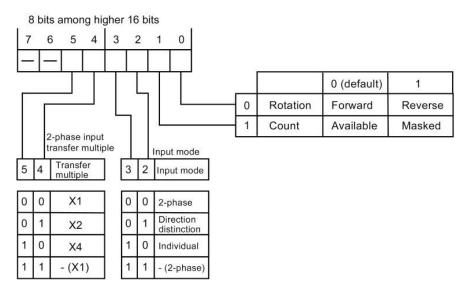
The following example program compares the count of the output pulses with the count of the feedback pulses at the E point control and makes the deceleration stop if the count is out of the allowable range.

For the pulse count of the feedback counter, read the values in H10F, H10E for the 1st. axis, in H11F, H11E for the 2nd. axis, stored in the shared memory.

The feedback counter is available for every axis.

When counting the 2-phase input such as the input from the encoder, set the pulse input transfer multiple to "4 multiple setting" (x 4) or "2 multiple setting" (x 2) using the control code to prevent counting error.

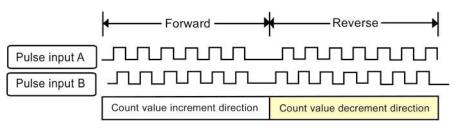
Please note that the counter value will be cleared when the home return is completed or when the Error clear flag (Y_F) is ON.

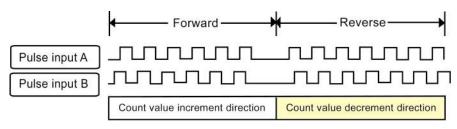

13.2 Feedback Counter Functions

- -The feedback counter can be used as a general-purpose counter as 2-phase input, Direction distinction input or Individual input.
- The feedback counter uses the contact which is the same as the one for the pulse input signal.
- Accordingly, it can not function together with the pulser input operation.
- -The feedback counter is available for each axis.
- Please note that the counter value is cleared when the home return is completed or when the Error clear flag (Y_F) is ON. A special attention is required when using the feedback counter as a general-purpose high-speed counter.
- When counting the 2-phase input such as the input from the encoder, set the pulse input transfer multiple to "4 multiple setting" (x 4) or "2 multiple setting" (x 2) using the control code to prevent counting error.

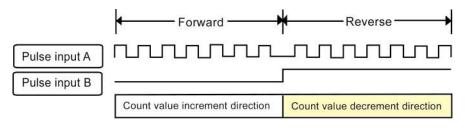
The pulse count value for the feedback counter is stored in the addresses below;

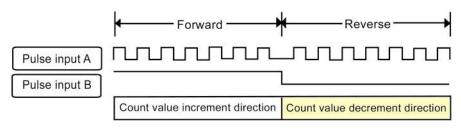
	Shared memory address	Countable range
1st. axis	H10F, 10E	Signed 32 bits
2nd. axis	H11F, 11E	-2,147,483,648 to + 2,147,483,647

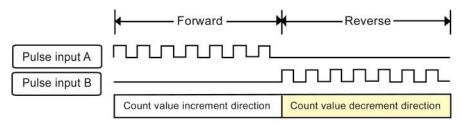

Feedback counter function control code table

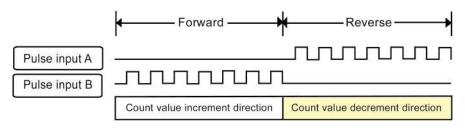

13.3 Feedback Counter Input Method

2-phase input <normal settings>

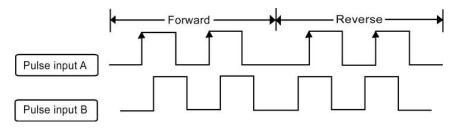

Control code Higher side H0


2-phase input <reverse settings> Control code Higher side H1

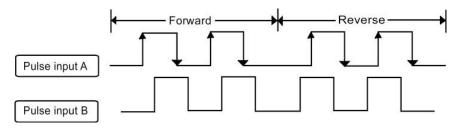

Direction distinction input <normal settings> Control code Higher side H4


Direction distinction input <reverse settings> Control code Higher side H5

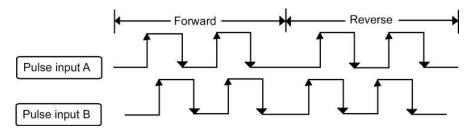
Individual input <normal settings> Control code Higher side H8

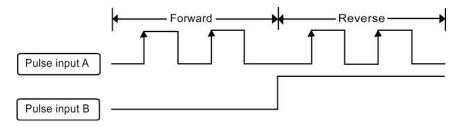


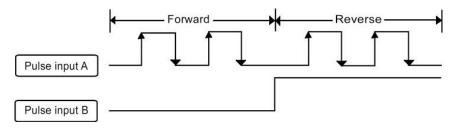
Individual input <reverse settings> Control code Higher side H9

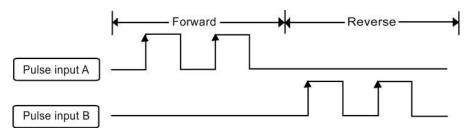


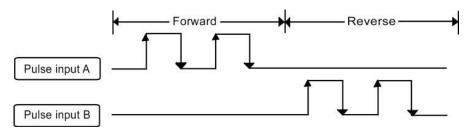
13.4 Feedback Counter Transfer Multiple Function


2-phase input: 1 transfer multiple


2-phase input: 2 transfer multiple

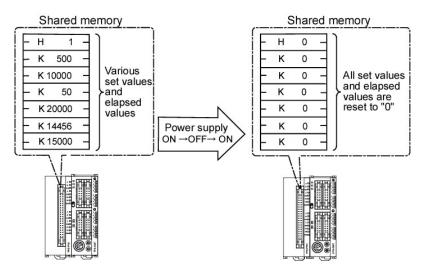

2-phase input: 4 transfer multiple


Direction distinction input: 1 transfer multiple


Direction distinction input: 2 transfer multiple

Individual input: 1 transfer multiple

Individual input: 2 transfer multiple

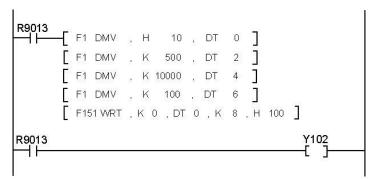

Chapter 14

Precautions Concerning the operation and Programs

14.1 Precautions Relating to Basic Operations of the Unit

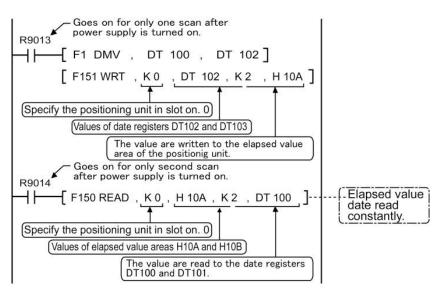
14.1.1 Values of Shared Memory are Cleared When Power is Turned OFF

The data in the shared memory of the positioning unit is not backed up if a power failure occurs. As a result, when the power supply is turned ON again, the default operation data should be written to the shared memory before the various start flags are turned ON.



When the power supply is turned OFF, the various set values in the shared memory are set to "0". All of the control codes also return to the default values.

Note:

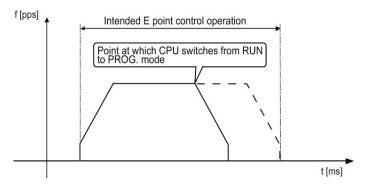

If the start flags are turned ON without writing the data to the memory, a set value error may occur, and the unit may not operate as expected.

If a home return is carried out when the power supply is ON, write the control codes to the memory before the home return start flag is turned ON. If the control codes are not written to the memory, problems may occur such as a discrepancy between the direction of the home return and the input logic, causing the unit to operate in unexpected ways.

Reference:

The following program should be written to the unit, so that after the power supply is turned ON, the elapsed value data prior to the power supply being turned OFF will be read.

Example:


Before the power supply is turned OFF, the elapsed values of DT100 and DT101 are read, and when the power supply is turned ON, the contents of DT100 and DT101 are written to the elapsed value area of the unit, through DT102 and DT103.

14.1.2 Operation When the CPU Switches from RUN to PROG. Mode

For safety reasons, if the CPU mode switches to the PROG. mode during E point control, P point control, JOG operation, JOG positioning operation or a home return, any positioning unit operations in progress at that point are interrupted, and the speed decelerates. In addition, the pulse output is stopped during the pulser operation.

Example:

If the CPU switches from RUN to PROG. mode during E point control operation

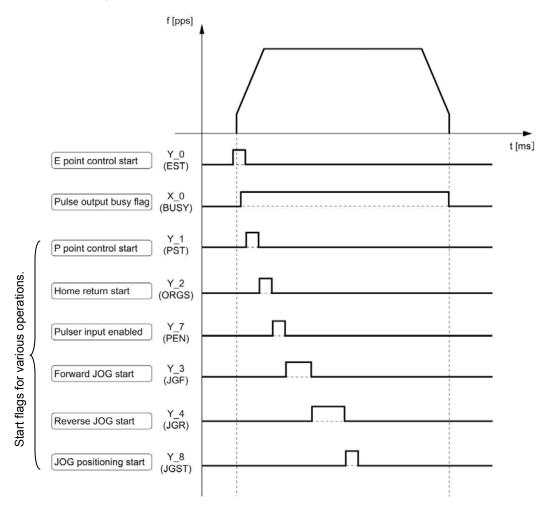
Note:

At the point at which the CPU switches from the RUN to the PROG. mode, deceleration and stopping begin.

The acceleration rate used for deceleration at that point is that determined by the data stored in the shared memory when the switch is made from the RUN to the PROG. mode.

The CPU mode should not be switched from RUN to PROG. while positioning unit operation is being executed under normal usage conditions.

Reference:

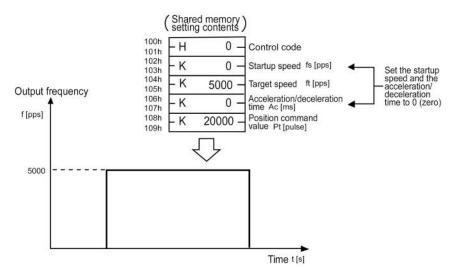

Deceleration Stop and Forced Stop, Chapter 12

14.1.3 Operation Cannot be Switched Once One Operation Has Started

If the startup flag for one of the six basic operations of the positioning unit (E point control, P point control, home return, JOG operation, JOG positioning operation and pulser operation) goes ON and operation is initiated, it is not possible to switch to another operation, even if the flag for that operation goes ON.

Example:

Once the E point control start flag has gone ON and E point control has begun, it is not possible to switch to P point control, a home return, JOG operation, JOG positioning operation or pulser operation, even if those flags are turned ON, while E point control is still in operation.

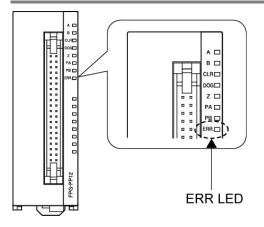

Reference:

If the flag for a deceleration stop or forced stop goes ON, the six basic operations noted above (E point control, P point control, Home return, Pulser operation, JOG operation, JOG positioning operation) stop immediately.

14.2 Precautions Concerning Practical Usage Methods

14.2.1 Setting the Acceleration/Deceleration to Zero

To initiate the target speed immediately without accelerating or decelerating (acceleration/deceleration Zero operation = automatic startup operation), the startup speed and acceleration/deceleration time should both be set to 0 (zero). This produces pulse output at the target speed, with an acceleration/ deceleration time of 0 (zero). Setting the startup speed equal to the target speed results in a set value error, and the positioning unit will not start.



Chapter 15

Operation if an Error Occurs

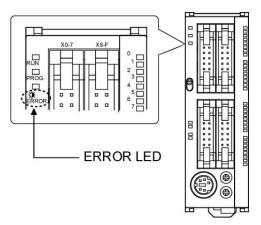
15.1 Positioning Unit Operation if an Error Occurs

15.1.1 If the Positioning Unit ERR LED Lights

When starting (stopped)

If a set value error occurs when the positioning unit is started (stopped), the various operations will not begin. This applies to E point control, P point control, home return, JOG operation, JOG positioning operation and pulser operation, none of which will be initiated.

During P point control operation or JOG operation


If a set value error occurs during P point control operation or during JOG operation, or if a limit error occurs during E point control, P point control, home return, JOG operation, JOG positioning operation or pulser operation, the positioning unit interrupts any operation currently in progress, and enters the "deceleration stop" status.

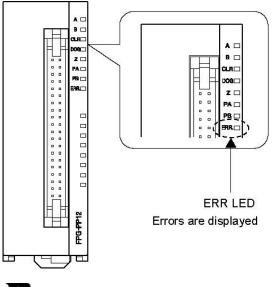
Reference:

When a set value error occurs or a limit error occurs, the error clear flag should be turned OFF, ON, and then OFF again. Operation cannot be restarted until the error has been cleared.

Operation continues on other axes where the set value error has not occurred. -> Deceleration stop operation (Reference: 12.2.1 Deceleration Stop)

15.1.2 If the CPU ERROR LED Lights

The positioning unit interrupts any operation currently in progress, and enters the "deceleration stop" status.


Reference:

Operation is continued, however, if "Operation" has been specified in the system register settings for operation when an error of some kind occurs.

-> Deceleration stop operation (Reference: 12.2.1 Deceleration Stop)

15.2 Errors Which Occur in the Positioning Unit Itself

The positioning unit itself has a function which warns the user of an error if any of the parameters for the "Startup speed", "Target speed", and "Acceleration/deceleration time" settings are not appropriate.

Key Point:

The timing of a warning is when a start-up condition such as $Y \triangle 0$ is turned on.

Cases in which errors occur, and their contents

ltem		At startup	setting		At setting	At setting change during operation					
		Negative number	0	Out of range	Negative number	0	Out of range				
	startup speed	Error		Error							
	target speed	Error	Error	Error							
E point	Acceleration/deceleration time	Error		Error							
control	position command value				No applicat	ole condition					
control	(Increment)	No applica	ble conditior	,							
	position command value	No applica		•							
	(Absolute)										
	startup speed	Error		Error							
	target speed	Error	Error	Error	Error	Error	Error				
Dimetat	Acceleration/deceleration time	Error		Error	Error		Error				
P point control	position command value										
control	(Increment)	No opplies	hle condition		Ne annliach	le condition					
	position command value	- No applica	ble conditior	1	No applicat	ole condition					
	(Absolute)										
	startup speed	Error	Error	Error							
	target speed	Error	Error	Error							
	Acceleration/deceleration time	Error		Error							
Home	position command value			•	No applicat	le condition					
return	(Increment)										
	position command value	No applica	ble conditior	ו							
	(Absolute)										
	startup speed	Error		Error							
	target speed	Error	Error	Error	Error	Error	Error				
JOG	Acceleration/deceleration time	Error		Error							
operati	position command value			•							
on	(Increment)				No applicable condition						
	position command value	No applica	ble conditior	1							
	(Absolute)										
	startup speed	Error		Error							
JOG	target speed	Error	Error	Error							
positio	Acceleration/deceleration time	Error		Error							
ning	position command value				No applicat	ole condition					
operati	(Increment)										
on	position command value	_	_	_							
	(Absolute)	Error	Error	Error							
	startup speed										
	target speed	Error	Error	Error							
Pulser	Acceleration/deceleration time		•	•							
input	position command value	1			No applicat	le condition					
operati	(Increment)	No applica	ble conditior	ı	The second						
on	position command value										
	(Absolute)										
Operatio	n when above error occurs	Operation	does not beg	ain	Deceleratio	n stop					

1. The position command value and the control code are not subject to setting errors regardless of whether the increment or absolute method is selected.

2. Data of this area is not subject to errors.

3. When starting any of the modes (except pulser input operation), an error will occur if the startup speed setting is greater than or equal to the target speed setting.

4. A setting change can only be made during JOG operation if linear acceleration/deceleration is selected.

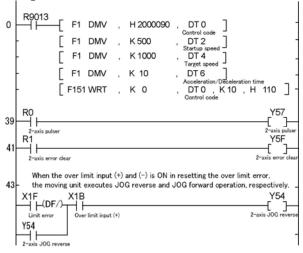
		At startup		During operat	ion					
		Over limit	Over limit	Over limit	Over limit					
		input (+)	input(-)	input (+)	input(-)					
E point control	Forward	Error	Error	Error	Error					
E point control	Reverse	Error	Error	Error	Error					
P point control	Forward	Error	Error	Error	Error					
P point control	Reverse	Error	Error	Error	Error					
Home return	Forward	Error		Error						
Home return	Reverse		Error		Error					
Home return	Forward		e position cannot	,	mit error					
(Home search)	Reverse	occurs. (Refer to the notes below.)								
JOG operation	Forward	Error		Error						
JOG operation	Reverse		Error		Error					
JOG positioning	Forward	Error	Error	Error	Error					
operation	Reverse	Error	Error	Error	Error					
Pulser input operation	Forward	Error		Error						
Fuiser input operation	Reverse	Note)	Error		Error					
Operation when above o occurs	error	Operation does	s not begin	Stop						

Cases in which limit errors occur, and their contents

1. Data of this area is not subject to errors.

Note: Pulse/Sign output mode can be started up.

When the CW/CCW output mode is set, the limit error will occur. If the error occurs, solve it using the methods as described below.


Using the home return function

- (1) Turn ON the Error clear (Y F) of the Over limit input (+), and then turn it OFF.
- (2) Turn ON the Home return start (Y_F) (towards the elapsed value minus (-) direction), while the Over limit input (+) is ON.

-Using the JOG operation function

- (1) Turn ON the Error clear (Y F) of the Over limit input (+), and then turn it OFF.
- (2) Turn ON the Reverse JOG (Y_4), while the Over limit input (+) is ON.

Program

^{2.} When the near home input will not go ON but the Over limit input in the opposite goes ON after the table reversed the direction by the Over limit switch during the home search, a limit error occurs.

15.3 Resolving Problems

15.3.1 If the Positioning Unit ERR LED Lights

Conditions

There is a set value error for positioning or a limit error in the positioning data.

Procedure 1

Using programming tools, check the contents of an error. X_E ON: A set value error occurs. X_F ON: A limit error occurs.

In case of a limit error, go to Procedure 2. In case of a set value error, go to Procedure 3.

Procedure 2

By either of the following, check a limit error.

- 1. When the set Over limit switch is ON, execute JOG operation, home return or any other operation to move the table until the Over limit switch goes OFF after a error is canceled.
- 2. In case of error with the set Over limit switch being OFF or without the Over limit switch, change the limit input valid logic using the control code.

Over limit switch (+) and (-) input status can be monitored by X_B and X_C.

Go to Procedure 5.

Procedure 3

Using programming tools, check to see if the values in the data registers being used as the positioning parameter data tables are within the allowable setting range.

Range for positioning data setting

Type of parameter	Allowable setting range	Program specifications
Startup speed (pps)	0 to +4,000,000 [pps]	K0 to K4,000,000
Target speed (pps)	+1 to +4,000,000 [pps]	K1 to K4,000,000
Acceleration/deceleration time (ms)	0 to +32,767 [ms]	K0 to K32,767

Points to check:

1.Is the value for the startup speed larger than that for the target speed? An error occurs if the two values are the same, as well.

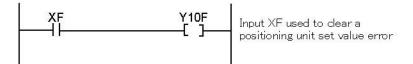
For the first speed with E point control and P point control, and when carrying out JOG operation, JOG positioning operation and home return, a value should be set which is larger than the startup speed.

- 2. Has the target speed been set to "0"?
- 3. Has a data register been set to a negative value?
- 4. If parameters have been set from an external source, and if operation is being carried out internally in the PLC, check to make sure the values match those specified by the design.

Procedure 4

Modify the value out of the range in the program.

Procedure 5


Turn off all the Y \triangle 0 to Y \triangle 9, and reset an error by any of the following methods.

- 1. Specify in the program so that the error clear flag (ECLR) goes OFF, ON and then OFF.
- 2. By the forced output using FPWIN-GR or FPWIN-Pro, make the error clear flag (ECLR) goes OFF, ON and then OFF.
- 3. Turn OFF once the driver and then PLC and turn ON again PLC and then the driver.

Clearing an error by Error clear signal 1 (specify in the program)

This is to clear an error in the program using the switch connected in advance. Make the optional input to turn ON the error clear signal applicable for each axis.

Example:

Note:

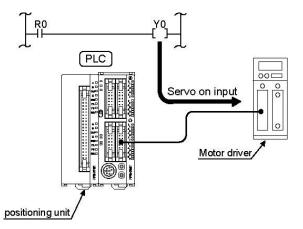
The number of relay to be used varies depending on the allocations.

Clearing an error by Error clear signal 1 (forced output)

Procedure:

- 1. Select [Forced I/O] from the menu of the programming tool software.
- 2. Specify the flag Y_F for the forced output.
- 3. Make the target contact once ON and then OFF.
- 4. Cancel the forced status.

Note:


Without fail, execute "forced cancel" operation after the forced output.

The number of relay to be used varies depending on the allocations, axis number and the type of the unit installed.

15.3.2 If the Motor Does Not Turn or Operate (if the LED for pulse output A or B is flashing or lighted)

Solution 1: For the servomotor

Check to make sure the servo on input is set to "ON".

Solution 2

Check to make sure the power supply for the driver is ON.

Solution 3

Check to make sure the wiring between the positioning unit and the driver has been correctly connected.

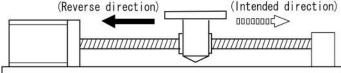
Solution 4

Check to make sure the settings for the pulse output method (CW/CCW method or Pulse/Sign method) are appropriate for the driver.

 \rightarrow Check the control code items.

15.3.3 If the Motor Does Not Turn or Operate (if the LED for pulse output A or B is not lighted)

Solution


Review the program and correct it if necessary.

Points to check:

- 1. Check to make sure the I/O numbers are appropriate.
- 2. Check non-rewriting of the start flag in the program.
- 3. Check the input valid logic of the Over limit switch. (In this case, Error LED is blinking.)

15.3.4 Rotation/Movement Direction is Reversed

Example of reversed rotation/movement direction:

Solution 1

Make sure the wiring between the positioning unit and the driver has been correctly connected.

Point to check:

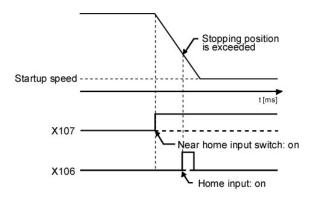
Make sure the CW/CCW output or the Pulse/Sign output has been connected to the pertinent input on the driver side.

-> "Connection of pulse output signal" (Refer to page 3-9.)

Solution 2

Check to make sure the control codes in the shared memory match the specifications for the position command values.

Point to check:

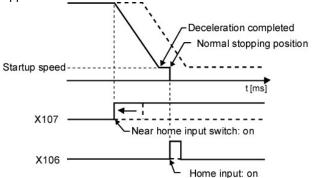

The settings for the increment "relative value control" and the absolute "absolute value control" are specified through the control codes in the program. -> Increment and Absolute (Refer to page 4-13.)

Solution 3

If the settings for the position command data have been designed with the plus (+) and minus (-) directions reversed, change the direction of rotation, using the mode settings witches on the back of the unit.

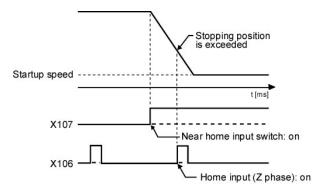
-> "Pulse output mode" (Refer to page 4-2.)

15.3.5 The Stopping Position is OFF for a Home Return



Conditions

When a home return is carried out, there is a possibility that the speed cannot be slowed sufficiently. If deceleration cannot be continued down to the startup speed, the unit will not stop even if there is home input.


Solution 1

Try shifting the position of the near home input switch in the direction of the home return, and in the opposite direction.

Point to check:

If the home input is connected to the Z phase of the servo motor driver, there may be cases in which the near home input position is close to the home input.

Solution 2

Correct the program and set the home return speed to a slower speed.

15.3.6 Speed Does not Slow for a Home Return

Conditions

There is a possibility that the near home input has not been read correctly.

Solution 1

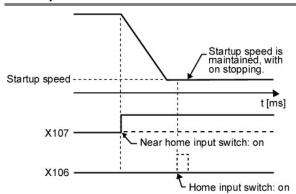
Forcibly turn the near home input switch ON and OFF from an external source, and check to see if the near home input display LED "D" on the positioning unit lights.

Solution 2

Check to make sure the input valid logic for the near home input switch is normally either ON or OFF.

Solution 3

Check the specifications of the control codes in the home return program.


-> Control code: (Refer to page 16-7.)

-> Input valid logic: (Refer to page 10-24.)

Point to check:

If no near home input has been connected, the near home input will be recognized as being OFF.

15.3.7 Movement Doesn't Stop at Home Position (after decelerating for home return)

Conditions

There is a possibility that the home input has not been read correctly.

Point to check

The home return makes home input subsequent to deceleration valid, so if the home signal is input during deceleration, that input will end up being ignored.

Solution 1

Forcibly turn the home input sensor ON and OFF from an external source, and check to see if the home input display LED "Z" on the positioning unit lights.

Solution 2

Check to make sure the input logic for the home input is normally either ON or OFF.

Solution 3

Check the specifications of the control codes in the home return program.

- -> Control code: (Refer to page 16-7.)
- -> Input valid logic: (Refer to page 10-24.)

Point to check:

If no home input has been connected, the home input will be recognized as being ON.

Chapter 16

Specifications

16.1 Table of Performance Specification

General s	pecifications
-----------	---------------

theme	
Item	Description
Ambient operating temperature	0 to +55 °C/32F to +131F
Ambient storage temperature	-20 to +70 °C/ - 4F to +158F
Ambient operating humidity	30 to 85 % RH (at25°C non-condensing)
Ambient storage humidity	30 to 85 % RH (at25°C non-condensing)
Breakdown voltage	500 V AC, 1 minute Between the various pins of the external connector and the ground
Insulation resistance	$100M\Omega$ or more (measured with 500 V DC testing) Between the various pins of the external connector and the ground
Vibration resistance	10 to 55 Hz, 1 cycle/min. (double amplitude of 0.75 mm/0.030 in., 10 min. each in the X, Y, Z directions)
Shock resistance	Shock of 98 m/s ² , 4 times in the X, Y, Z directions
Noise immunity	1,000 V[P-P] with pulse widths 50ns and 1µs (based on in-house measurements)
Operating environment	Free of corrosive gases and excessive dust


Performance specifications

Item Arr Poil Command Command Arr Poil	Item	she	cincations	AFPG430	AFPG431	AFPG432	AFPG433							
Output type Transistor Line driver Occupied I/O points Input: 16 points, Unput: 16 points, Output: 16 point, Output: 16 points, Out														
Occupied I/O points Input: 30 points, Output: 16 points, Output: 12 points, Output: 22 points, Output: 32 points, Independent Insu: 32 points, Independent Position command Command units range 1 axis, Signed 32 bits (- 2,147,483,648 to +2,147,483,647 pulses) 2 axes, Independent 1 points, Independent Acceleration/ deceleration/ command Command range 1 pps to 500kpps (can set in 1pps.) 1 pps to 4Mpps (can set in 1pps.) Acceleration/ deceleration/ deceleration/ deceleration/ deceleration/ deceleration/ deceleration/ deceleration/ deceleration/ deceleration/ deceleration 1 os 32,767 ms (can set in 1ms) Home return Point terminals Speed setting possible (changes return speed and search speed) Speed setting possible (changes return speed and search speed) Opperation mode Fooint control (Linear and S accelerations/decelerations/ selecting possible) Fooint control (Linear and S accelerations/decelerations selecting possible) Fooint control (Linear and S accelerations/decelerations/ selecting possible) Operation mode 0.02ms or 0.005ms possible, (r2) <th></th> <th></th> <th></th> <th></th> <th>FPG-PP21</th> <th colspan="4"></th>					FPG-PP21									
Occupied I/O points Output: 16 points Output: 32 points Output: 32 points Independent Independent Independent I axis, I axis, I axis, I axis, I axis, I axis, I axis, I axis, <t< th=""><th>Output type</th><th></th><th></th><th></th><th>Innut: 22 nainta</th><th></th><th>Innut: 22 nainta</th></t<>	Output type				Innut: 22 nainta		Innut: 22 nainta							
Number of axes controlled 1 axis. independent 1 axis. independent 2 axes. independent Position command Command units max, pulse count Signed 32 bits (-2,147,483,648 to +2,147,483,647 pulses) 1 axis. independent	Occupied I/O po	oints												
Number of axes controlled independent independent independent independent Position command Command units Pulse unit (The program specifies whether Increment or Absolute is used.) Speed command Command 1pps to 500kpps (can set in 1pps.) 1pps to 4Mpps (can set in 1pps.) Acceleration/ deceleration command Acceleration/ deceleration deceleration Linear acceleration/deceleration (tis takes the form of an "S") Acceleration/ deceleration independent Linear acceleration/deceleration (this takes the form of an "S") Acceleration/ deceleration independent Can select from Sin curve, Secondary curve, Cycloid curve and Third curve. Acceleration/ deceleration time speed 0 to 32,767 ms (can set in 1ms) Bower eturn Speed setting possible (changes return speed and search speed) Input terminals Home input, Near home input, Over limit input (+).Over limit input (-) Output terminals Deviation counter clear output signal P point control (Linear and S accelerations/decelerations selecting possible) Point control (Signal S accelerations/decelerations selecting possible) Operation mode 0.02ms or 0.05ms possible.("2) Output interface Output interface Output mode 19.405.400.4500.4100.4100.4100.4100.4100.4														
Position command Command units Pulse unit (The program specifies whether Increment or Absolute is used.) Speed command Command range Signed 32 bits (-2,147,483,648 to +2,147,483,647 pulses) Acceleration/ deceleration command Acceleration/ deceleratin/ deceleration/ dece	Number of axes	con	trolled	/										
Position command Command units used.) Image Max, pulse count Signed 32 bits (-2,147,483,648 to +2,147,483,647 pulses) 1pps to 4Mpps (can set in 1pps.) Acceleration/ deceleration command Acceleration/ deceleration deceleration deceleration Linear acceleration/deceleration (dis takes the form of an "S") Acceleration/ deceleration command Acceleration/ deceleration deceleration Linear acceleration/deceleration (this takes the form of an "S") Mome return Acceleration/ deceleration Command units Speed secting possible (changes return speed and search speed) Home return Speed secting possible (changes return speed and speed search speed) Epoint control (Linear and S accelerations/ selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) E point control (Linear and S accelerations/decelerations selecting possible) Operation mode JOG operation function ("1) JOG operation function ("1) JOG positioning function Pulser input function ("3) Transfer multiplea cutor taio (x1,x2, x5,x10,x50,x100,x500,x100,x100 selecting possible) Real-time frequency change function Infinity output function Output mode Nutput interface Output mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Command Signed 32-bit (-2,147,483,646 to +2,147,483,647 pulse)		1												
Max, pulse count Signed 32 bits (- 2,147,483,648 to +2,147,483,647 pulses) Speed command Command range 1pps to 500kpps (can set in 1pps.) 1pps to 4Mpps (can set in 1pps.) Acceleration/ deceleration deceleration Sacceleration/deceleration, deceleration/ deceleration Sacceleration/deceleration, deceleration/ deceleration Sacceleration/deceleration, deceleration/ deceleration Sacceleration/deceleration, deceleration/ deceleration Sacceleration/deceleration, deceleration Mome return Mome Return speed Speed setting possible (changes return speed and search speed) Speed setting possible (changes return speed and search speed) Mome return Home Return speed Speed setting possible (changes return speed and search speed) Speed setting possible (changes return speed and search speed) Output terminals Home input, Near home input, Over limit input (+).Over limit input (-) Deviation counter clear output signal Operation mode E point control (Linear and S accelerations/ selecting possible) Saccelerations/ selecting possible) Saccelerations/ selecting possible Startup time 0.02ms or 0.005ms possible. (*2) Input turction Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter (*3) Input mode Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) 20ma		Co	mmand units	used.)	- ·									
command range (can set in 1pps.) (can set in 1pps.) Acceleration/ deceleration command Acceleration/ deceleration Linear acceleration/deceleration, s acceleration/deceleration (its takes the form of an "S") Acceleration/ deceleration can set in 1pps.) Linear acceleration/deceleration, deceleration Acceleration/ deceleration/ deceleration 0 to 32,767 ms (can set in 1ms) Acceleration/ deceleration/ deceleration Home return speed Speed setting possible (changes return speed and search speed) Input terminals Home input, Near home input, Over limit input (+), Over limit input(-) Output terminals E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode JOG operation function (1) JOG positioning function Pulser input function (1) JOG position ratio (×1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Startup time Output mode 1Pulse output (Pulse/Sign), 2Pulse output (CW/CCW) Generation Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter (*3) Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) <th>oonnana</th> <th>Ma</th> <th>x, pulse count</th> <th>Signed 32 bits (-</th> <th>2,147,483,648 to +</th> <th>2,147,483,647 puls</th> <th>es)</th>	oonnana	Ma	x, pulse count	Signed 32 bits (-	2,147,483,648 to +	2,147,483,647 puls	es)							
Acceleration/ deceleration/ deceleration/ command deceleration/ modeleration/ deceleration time S acceleration/ curve. curve. Secondary curve, Cycloid curve and Third curve. Home return Acceleration/ deceleration time 0 to 32,767 ms (can set in 1ms) 0 Home return Speed Speed setting possible (changes return speed and search speed) search speed) Input terminals Home input, Near home input, Over limit input (+), Over limit input(-) Output terminals Output terminals Deviation counter clear output signal E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) P point control (10 me search) JOG operation function (*1) JOG positioning function Pulser input function (*1) JOG positioning function Pulser input function (*1) JOG postioning function Startup time 0.02ms or 0.005ms possible. (*2) Output interface Output mode Feedback counter (*3) Countable range Feedback counter (*3) Signed 32-bit (-2.147,483,648 to +2.147,483,647 pulse) Feedback counter (*3) Input mode Input mode (*3) The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current corsumption (at 5 V D					.)		.)							
Acceleration/ deceleration/ command "S" Acceleration/ deceleration can select from Sin curve, Secondary curve, Cycloid curve and Third curve. Home return Acceleration time 0 to 32,767 ms (can set in 1ms) 0 to 32,767 ms (can set in 1ms) Home return Speed Speed setting possible (changes return speed and search speed) Speed setting possible (changes return speed and search speed) Output terminals Home input, Near home input, Over limit input (+),Over limit input(-) Deviation counter clear output signal E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode JOG operation function (*1) JOG operation function (*1) JOG operation function ratio (×1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Real-time frequency change function Infinity output function Startup time 0.02ms or 0.005ms possible. (*2) Output interface Output mode range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. (Coefficient speed 11 MHz Other functions The flag to compare the elapsed val		Ac	celeration/	Linear acceleratio	n/deceleration,									
deceleration command "S" Acceleration/ deceleration ime can select from Sin curve, Secondary curve, Cycloid curve and Third curve. Home return Acceleration/ deceleration time 0 to 32,767 ms (can set in 1ms) Home return Speed setting possible (changes return speed and search speed) Input terminals Home input, Near home input, Over limit input (+), Over limit input(-) Output terminals Deviation counter clear output signal E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) P point control (1) JOG positioning function P User input function (*1) JOG positioning function PUlser input function (*1) JOG positioning function Pulser input function (*3) Transfer multiplication ratio (*1,*2, ×5,×10,*50,×100,*500,*1000 selecting possible) Real-time frequency change function Infinity output function Startup time 0.02ms or 0.005ms possible. (*2) Output mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. (r3) Coefficient speed 1MHz	Accoloration/													
command Acceleration/ deceleration time 0 to 32,767 ms (can set in 1ms) Home return speed Home Return speed Speed setting possible (changes return speed and search speed) Home return Home Return speed Speed setting possible (changes return speed and search speed) Output terminals Home input, Near home input, Over limit input (+), Over limit input(-) Output terminals Deviation counter clear output signal Point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode Voltage Q opsitioning function Pulser input function (*1) JOG operation function (*1) JOG postioning function Pulser input function (*3) Transfer multiplication ratio (×1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Real-time frequency change function Infinity output function Startup time Output mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Generatic Output mode Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter (*3) Input mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Max. Coefficient speed 150 mA max. 220 mA max. 150 mA max. 220 mA max. Internal current consumption (at 5 V DC) (*4) Voltage 21.6 V DC to 26.		"S'	' Acceleration/	can select from S	in curve, Secondary	/ curve, Cycloid cur	ve and Third							
Acceleration deceleration time 0 to 32,767 ms (can set in 1ms) Home Return speed Speed setting possible (changes return speed and search speed) Input terminals Home nput, Near home input, Over limit input (+). Over limit input(-) Output terminals Deviation counter clear output signal E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode Fe point control (Linear and S accelerations/decelerations selecting possible) JOG operation function (*1) JOG operation function (*1) JOG positioning function Pulser input function (*3) Transfer multiplication ratio (×1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Real-time frequency change function Infinity output function 0.02ms or 0.005ms possible. (*2) Output interface Output mode 1Pulse output (Pulse/Sign). 2Pulse output(CW/CCW) Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Input mode Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) 1MHz 1MHz Other functions The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) 220 mA max. Internal current consumption 150 mA max. 220 mA max. 150 mA max.				curve.										
Home return Speed setting possible (changes return speed and search speed) Input terminals Home input, Near home input, Over limit input (+), Over limit input(-) Output terminals Deviation counter clear output signal E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode JOG operation function (*1) JOG operation function (*1) JOG operation mode JOG operation function (*1) JOG operation function (*1) Startup time 0.02ms or 0.005ms possible. (*2) Output termise Output interface Output mode Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Feedback counter Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter Input mode 1 MHz Other functions 1 MHz The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption 150 mA max. 220 mA max. 220 mA max. Current supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA	commanu	Ac	celeration/	0 to 32 767 ms (o	an set in 1ms)									
speed search speed) Input terminals Home input, Near home input, Over limit input (+),Over limit input(-) Output terminals Deviation counter clear output signal E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations Operation mode Feedback counter P opint control (Linear and S accelerations/decelerations/decelerations/decelerations Startup time 0.02 operation function (*1) JOG positioning function Pulser input function (*3) Transfer multiplication ratio (*1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Real-time frequency change function Infinity output function Startup time 0.02 ms or 0.005 ms possible. (*2) Output interface Output mode Input mode Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter (*3) Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Cother functions speed 1 MHz Other functions speed 1 MHz The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage Current consumption		deo	celeration time		,									
Input terminals Home input, Near home input, Over limit input (+), Over limit input(-) Output terminals Deviation counter clear output signal E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode P point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode JOG operation function (*1) JOG operation function (*1) JOG positioning function Pulser input function ratio (×1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Real-time frequency change function Infinity output function Startup time 0.02ms or 0.005ms possible. (*2) Output mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Feedback counter (*3) Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. Coefficient speed 1 MHz Other functions The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Volta		Но	me Return	Speed setting pos	sible (changes retu	Irn speed and								
Input terminals Home input, Near home input, Over limit input (+), Over limit input (-) Output terminals Deviation counter clear output signal Deviation counter clear output signal Epoint control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations Operation mode Voltage P point control (Linear and S accelerations/decelerations Selecting possible) P point control (Linear and S accelerations/decelerations Point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations/decelerations selecting possible) Home return function (*1) JOG operation function (*1) JOG opsitioning function Pulser input function (*3) Transfer multiplication ratio (×1,×2, ×5,×10,×50,×100, v500,×1000 selecting possible) Real-time frequency change function Infinity output function 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Goutput interface Output mode 1Pulse output (Pulse/Sign), 2Pulse output (CW/CCW) Feedback counter Input mode 2-	Homo roturn			search speed)										
Operation mode E point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Operation mode Point control (Linear and S accelerations/decelerations selecting possible) Home return function (*1) JOG operation function (*1) JOG positioning function Pulser input function (*3) Transfer multiplication ratio (×1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Real-time frequency change function Startup time 0.02ms or 0.005ms possible. (*2) Output mode Output interface Output mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Feedback counter Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. Coefficient speed 1 MHz Other functions 150 mA max. 220 mA max. 150 mA max. 220 mA max. Its 5 V DC) (*3) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA 20mA 35mA	nome return													
Operation mode selecting possible) P point control (Linear and S accelerations/decelerations selecting possible) Home return function (Home search) JOG operation function (*1) JOG positioning function Pulser input function (*3) Transfer multiplication ratio (×1,×2, ×5,×10,×50,×100,×500,×1000 selecting possible) Real-time frequency change function Infinity output function Startup time 0.02ms or 0.005ms possible. (*2) Output interface Output mode Pedeback counter (*3) Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter (*3) Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Max. Coefficient speed 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Other functions The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA		Ou	tput terminals	Deviation counter	clear output signal									
Output interface Output mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Feedback counter Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. Coefficient speed 1 MHz Other functions The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA 20mA 35mA	Operation mode	•		P point control (Li selecting possible Home return func JOG operation fur JOG positioning fu Pulser input funct Transfer multiplica ×5,×10,×50,×100, Real-time frequen	near and S acceler) tion (Home search) nction (*1) unction ion (*3) ation ratio (×1,×2, ×500,×1000 selection icy change function	ng possible)	S							
Output interface Output mode 1Pulse output (Pulse/Sign), 2Pulse output(CW/CCW) Feedback counter Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Feedback counter Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. Coefficient speed 1 MHz Other functions The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA 20mA 35mA	Startup time													
Feedback counter Countable range Signed 32-bit (-2,147,483,648 to +2,147,483,647 pulse) Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. Coefficient speed 1 MHz Other functions The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA 20mA		9	Output mode		1 ()	utput(CW/CCW)								
Feedback counter (*3) Input mode 2-phase input, Direction distinction input, Individual input (transfer multiple available for each.) Max. Coefficient speed 1 MHz Other functions 1 MHz Internal current consumption (at 5 V DC) (*4) The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA 20mA 35mA			Countable	• •	0 //)							
Max. Coefficient speed 1 MHz Other functions The flag to compare the elapsed value is built in. (The timing signal outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA 20mA 35mA		ter		2-phase input, Direction distinction input, Individual input (transfer										
Other functions outputs at the optional position during an operation.) Internal current consumption (at 5 V DC) (*4) 150 mA max. 220 mA max. 150 mA max. 220 mA max. External power supply (*5) Voltage 21.6 V DC to 26.4 V DC 20mA 35mA 20mA	(3)		Coefficient	1 MHz										
Internal current consumption (at 5 V DC) (*4)150 mA max.220 mA max.150 mA max.220 mA max.External power supply (*5)Voltage Current consumption21.6 V DC to 26.4 V DC20mA35mA20mA	Other functions						ming signal							
Voltage 21.6 V DC to 26.4 V DC Supply (*5) Current consumption 20mA 35mA 20mA 35mA		cons	sumption	150 mA max.	220 mA max.	150 mA max.	220 mA max.							
supply (*5) Current consumption 20mA 35mA 20mA 35mA			Voltage	21.6 V DC to 26.4	V DC	·								
			Current			20mA	35mA							
	Weight		•	about 75g max.	about 80g max.	about 75g max.	about 80g max.							

- *1) When selected Linear acceleration/deceleration operation, the target speed can be changed during an operation.
- *2) The startup time can be changed by the control code setting in the shared memory. The factory setting (default setting) is 0.02ms.

About the startup time

The startup time is the time from the startup request to the pulse output. Particularly in Pulse/Sign mode, the output waveforms will be as follows since Sign signal should be output before the pulse output.

- *3) Pulser input operation and feedback counter use the same pulse input terminal, so the both can not function simultaneously.
- *4) To be supplied to the inside of the unit from FP Σ Control Unit.
- *5) The power is supplied from the external to the unit connector.

16.2 Table of Shared Memory Area

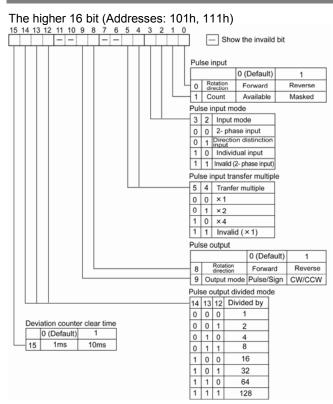
Shared Memory Area

The settings of the startup speed and target speed, specifying the direction of home return, selecting the type of S acceleration/deceleration should be made in the shared memory. The setting area (address) varies depending on the axis, but the setting contents are the same.

1st. axis: 100h to 10Fh occupied. 2nd. axis: 110h to 11Fh occupied.

When the settings is out of range, an error occurs when each is started and a set value error flag goes ON. Each setting value should be handled as the signed 32-bit data (double word).

The data in the shared memory will be cleared when the unit is turned OFF.


Shared memory address (Hexadecimal)				Setting needed/not needed (Y: needed, N: not needed)							
1 axis	2 axis	Name	Descriptions	E point control	P point control	JOG ope- ration	JOG posi- tioning ope- ration	Home return	Pulser ope- ration		
100h 101h	110h 111h	- Control code	Acceleration/deceleration (Linear, S) Control method (Increment, Absolute) Direction of home return and logic Pulser transfer	Y	Y	Y	Y	Y	Y		
10111			multiple								
102h 103h	112h 113h	Startup speed fs [pps]	Startup speed setting range: 0 to +4,000,000[pps]		Y (for 1st. speed only)	Y	Y	Y	N		
104h	114h		Target speed setting								
105h	115h	Target speed ft [pps]	Setting range: 1 to +4,000,000[pps]	Y	Y	Y	Y	Y	Y		
106h	116h	Acceleration/deceleratio	Acceleration/deceleration time Setting range:	Y	Y	Y	Y	N	N		
107h	117h	n time Ac [ms]	0 to 32,767 (ms)								
108h	118h	Position command value	Position command value setting Signed 32-bit	Y	Y	N	Y (Only for	N	N		
109h	119h	Pt [Pulse]	- 2,147,483,648 to +2,147,483,647[Pulse]				Incre- ment)				
10Ah	11Ah	Elapsed value	Count of elapsed value (Absolute) Signed 32 –bit								
10Bh	11Bh	Pe [Pulse]	- 2,147,483,648 to +2,147,483,647[Pulse]	-	-	-	-	-	-		
10Ch	11Ch	Compare pulse count	Comparison pulse setting Signed 32 bit								
10Dh	11Dh	Pc [Pulse]	- 2,147,483,648 to +2,147,483,647[Pulse]	-	-	-	-	-	-		
10Eh	11Eh	Feedback counter	Feedback pulse count Signed 32-bit					-			
10Fh	11Fh	Ct [Pulse]	- 2,147,483,648 to +2,147,483,647[Pulse]	-	-	-	-		-		

Note:

1. The shared memory is shared between E point control, P point control, JOG operation, JOG positioning operation, home return, and pulser input operations. Be careful that the shared memory is not overwritten at the same timing.

- For the first speed of E point control and P point control, and for JOG operation, JOG positioning operation and home return, the value set for the target speed should be larger than that set for the startup speed.
- 3. "-" is read and written as needed.
- 4. Up to 4Mpps can be set for the Line driver and transistor driver types, but set 500kpps max. for the transistor type.
- 5. Please note that the count of the feedback counter will be cleared when the home return is completed or when the Error clear flag (Y_F) is ON.

16.3 Control Code Details

When counting the 2-phase input such as the input from the encoder, set the pulse input transfer multiple to "4 multiple setting" (x 4) or "2 multiple setting" (x 2) using the control code to prevent counting error.

The lower 16 bit (Addresses: 100h, 110h)

15	14	13	12	2 11	10	9	8	7	6	5	4	3	2	2	1	0		-						
-	-			-																				
		Т	Т		T	Т	Т	Ί		<u> </u>	Г	Т	Τ		Г	Τ	P	lse	0	ut	put met	thod/H	lome return	1
																	Г					0 (Default)	1
																L	- 0	Pos	itic	on c	ommand	Increm	nent	Abdolute
															L		-1	de	cel	lera	tion/ tion	decele		S acceleration/ deceleration
													l				- 2	Dir ret	eci um	tion	of home	(-) dire elapse	ction of the d value	(+) direction of the elapsed value
												ŀ				_	- 3	Sta	irtu	ıp s	peed	0.02m		0.005ms
											L	_				_	- 4	log	íc		put valid	Valid w not sup	hen power is oplied	Valid when power is supplied
										l	 	_					- 5	Ne val	ar id I	hor	ne input c	Valid w supplie	hen power is	Valid when power is not supplied
									- 1		 	_					- 6				arch	Invalid		Valid
								1			 						-7	Lin	nit i ic	inp	ut valid	Valid w not sup	hen power is oplied	Valid when power is supplied
																	Pu	Ise	r ir	npi	ut			
					L												-10	9 9	Τ	8	Transfer r	multiple		
																	0	0	t	0	$\times 1$		1	
																	0	0	t	1	×2		1	
																	0	1	t	0	$\times 5$			
																	0	1	Т	1	×10		1	
																	1	0	T	0	$\times 50$		1	
																	1	0		1	×100)		
																	1	1	Τ	0	×500)	1	
																	1	1	Ι	1	×100	0		
																	"S	" ac	ce	ele	ration/d	eceler	ation	
		L									 	_					-13	3 12	2		Curve	,		
																	0	0		Sir	n curve			
																	0	1		Se	condry	curve		
																	1	0		Cy	cloid cu	irve		
																	1	1	T	Th	ird curv	e		
																	_						-	

How to specify the control code

32 bits are assigned to the control code as shown in the previous page. Specify the pulse output method or pulse input method. When you do not want to use any function, specify "0" for its applicable bit.

Example 1: Pulse output method at the default

All bits are 0 at the default setting, that is, the lowest 2 bit is 0. Accordingly, the control is the increment method, and the acceleration/deceleration method is a linear acceleration/deceleration.

Example 2: The control code when changing the control method to the Absolute method

 $\underbrace{[0]0]0]0[0]0]0[0]0[0]0]0[0]0]1}_{0 \quad 0 \quad 0 \quad 1 \quad \rightarrow \text{Read H0001 to specify H1.}}$

Lower 16bit

Example 3: The control code when changing "S" acceleration/deceleration to Secondary acceleration/deceleration in the Absolute method

Lower 16 bit

Example 4: The control code when changing the output method to CW/CCW in the

Increment method.

→Read H02000000 to specify H2000000.

Specifying the Pulse output divide mode

In the divided mode, the value set for the startup speed or the target speed can be divided by the optional value to output. This mode allows setting the frequency value less than 1pps. **Example:** Target speed is 300 pps and divided mode is 16: 18.75pps is output.

16.4 Table of I/O Flag Allocation

				I/O f	lag numbe	r (*5)	
Flag	Name		Description	1 - axis	2 - a	ixis	
ing	Nume		Description	type	type		
				1st axis	1st axis	2nd axis	
X_0	Pulse output busy	BUSY	ON during pulse output(*1)	X100	X100	X110	
X_1	Pulse output done	EDP	ON when Pulse output ends. (*2)	X101	X101	X111	
X_2	Acceleration zone	ACC	ON during acceleration zone.	X102	X102	X112	
X_3	Constant speed zone	CON	ON during constant speed zone.	X103	X103	X113	
X_4	Deceleration zone	DEC	ON during deceleration zone.	X104	X104	X114	
X_5	Rotation direction	DIR	Monitors direction of rotation. (ON during the elapsed value increment.)	X105	X105	X115	
X_6	Home input	ZSG	ON when home input becomes valid.	X106	X106	X116	
X_7	Near home input	DOG	ON when near home input becomes valid.	X107	X107	X117	
X_8	Home Return done	ORGE	ON when home return is done. (*3)	X108	X108	X18	
X_9	Comparison result	CLEP	ON when elapsed value of internal counter is greater than or equal to the number of comparison pulse.	X109	X109	X119	
X_A	Set value change confirmation	CEN	With P point control, this is used to confirm rewriting of set values. (*4)	X10A	X10A	X11A	
Х_В	Overt limit input (+)	LMTP	Monitors the flag of Over limit input (+) signal.	X10B	X10B	X11B	
x_c	Overt limit input (-)	LMTM	Monitors the flag of Over limit input (-) signal.	X10C	X10C	X11C	
X_D	Timing input monitor	TIMM	Monitors the flag of JOG positioning timing.	X10D	X10D	X11D	
X_E	Set value Error	SERR	ON when a set value error occurs.	X10E	X10E	X11E	
X_F	Limit Error	LERR	ON when Over limit input is made during operation or startup.	X10F	X10F	X11F	

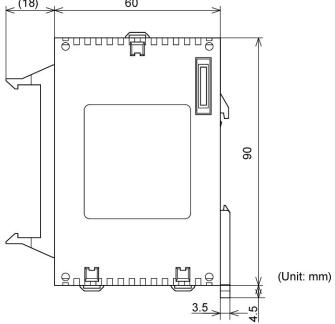
*1) ON during the pulse output of E point control, P point control, home return, JOG operation, JOG positioning operation and maintained ON until each operation is completed.

*2) ON when E point control, P point control, JOG operation, JOG positioning or pulser input operation ends. also ON at deceleration stop or forced stop. And if either of E point control, P point control, home return, JOG operation, JOG positioning operation or pulser input operation is started up, this goes OFF.

*3) ON when the home return is completed. This goes OFF when the next operation of E point control, P point control, JOG operation, JOG positioning operation, Home return or Pulser input operation is started.

*4) ON at P point control or E point control startup. OFF when any data is written to the shared memory of the positioning unit by the instruction, F151 or P151 in the user program.

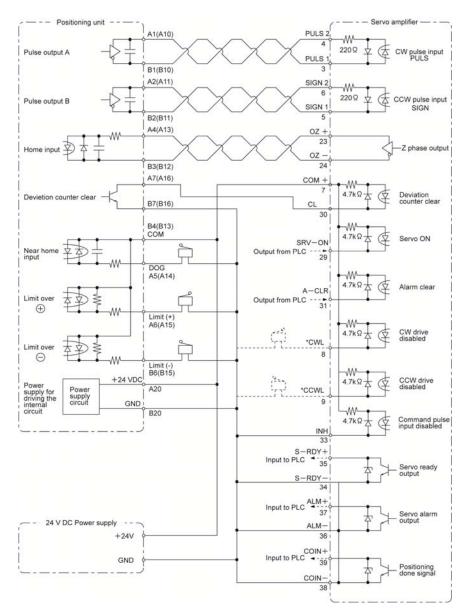
*5) Flag number is the one when the slot No. is 0. The No. actually used varies depending on where the unit is installed.


				I/O flag number (*5)				
Flag	Name		Description	1 – axis	2 - a	_		
•				type	ty tet avia			
Y_0	E point Control start	EST	When turned ON in the user program, E point control is initiated.	1st axis Y100	1st axis Y100	2nd axis Y110		
Y_1	P point control start	PST	When turned ON in the user program, P point control is initiated.	Y101	Y101	Y111		
Y_2	Home Return start	ORG S	When turned ON in the user program, Home return is initiated.	Y102	Y102	Y112		
Y_3	Forward JOG	JGF	When turned ON in the user program, Forward JOG is initiated.	Y103	Y103	Y113		
Y_4	Reverse JOG	JGR	When turned ON in the user program, Reverse JOG is initiated.	Y104	Y104	Y114		
Y_5	Forced stop	EMR	When turned ON in the user program, operations currently running are interrupted and forcibly terminated.	Y105	Y105	Y115		
Y_6	Deceleration stop	DCL	When turned ON in the user program, operations currently running are interrupted, and decelerate to a stop.	Y106	Y106	Y116		
Y_7	Pulser input enabled	PEN	When turned ON in the user program, pulser input is enabled. (valid only while ON.)	Y107	Y107	Y117		
Y_8	JOG positioning operation start	JGST	ON during the transfer from JOG operation to JOG positioning operation.	Y108	Y108	Y118		
Y_9	JOG positioning start	TIM	ON when JOG positioning is started. (can be used to confirm if JOG positioning operation is ON.)	Y109	Y109	Y119		
Y_A	-	-	-	Y10A	Y10A	Y11A		
Y_B	-	-	-	Y10B	Y10B	Y11B		
Y_C	-	-	-	Y10C	Y10C	Y11C		
Y_D	-	-	-	Y10D	Y10D	Y11D		
Y_E	-	-	-	Y10E	Y10E	Y11E		
Y_F	Error clear	ECLR	ON when to cancel an error.	Y10F	Y10F	Y11F		

Chapter 17

Dimensions and Driver Wiring

17.1 Dimensions

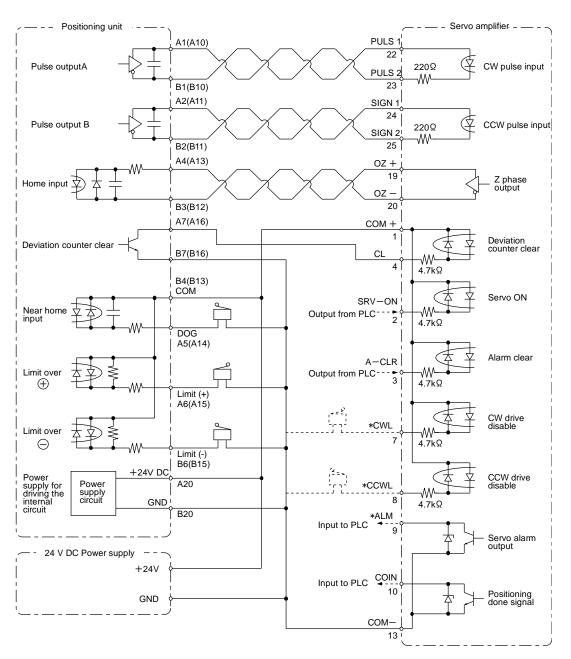


17.2 Wiring for Motor Driver

When using FP Σ Positioning Unit with MINAS Motor, an easy-connectable "Motor driver I/F terminal" is recommended.

Reference: < 1.1.3 Combination with MINAS Motor >

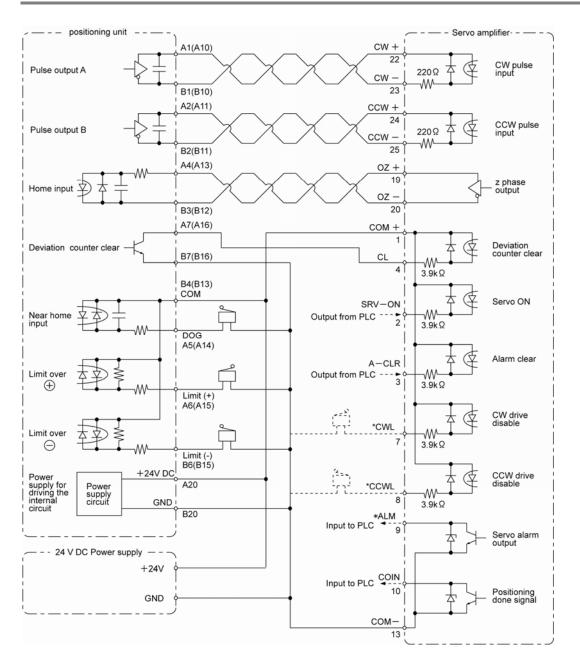
17.2.1 Panasonic MINAS A Series



*When connecting the CW drive disabled and CCW drive disabled input, the servo ready output, and the servo alarm output on the motor driver side, the circuits recommended by the various motor manufacturers should be used.

Numbers in parentheses after the unit side indicate the pin number for the second axis.

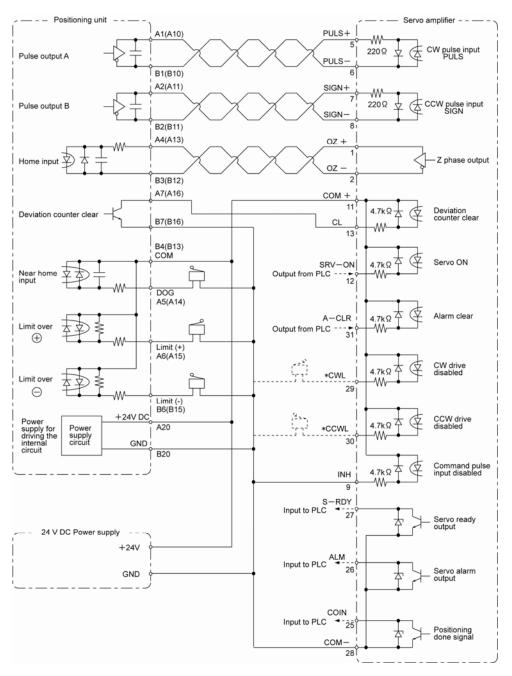
The above wiring is for the line driver output type.



*When connecting the CW drive disabled and CCW drive disabled input and the servo alarm output on the motor driver side, the circuits recommended by the various motor manufacturers should be used. Numbers in parentheses after the unit side indicate the pin number for the second axis.

The above wiring is for the line driver output type.

17.2.3 Panasonic MINAS EX Series

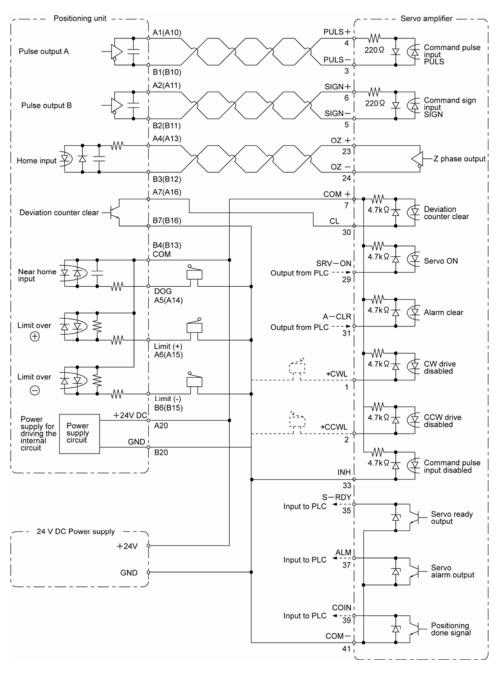


*When connecting the CW drive disabled and CCW drive disabled input and the servo alarm output on the motor driver side, the circuits recommended by the various motor manufacturers should be used. Numbers in parentheses after the unit side indicate the pin number for the second axis.

The above wiring is for the line driver output type.

As of October 2008, this is the end-of-life (EOL) product.

17.2.4 Panasonic MINAS X (XX) Series

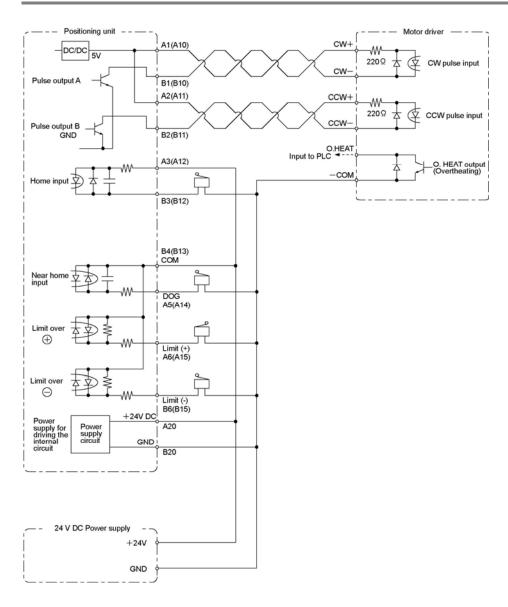

*When connecting the CW drive disabled and CCW drive disabled input, the servo ready output, and the servo alarm output on the motor driver side, the circuits recommended by the various motor manufacturers should be used.

Numbers in parentheses after the unit side indicate the pin number for the second axis.

The above wiring is for the line driver output type.

As of October 2008, this is the end-of-life (EOL) product.

17.2.5 Panasonic MINAS X (V)Series


*When connecting the CW drive disabled and CCW drive disabled input, the servo ready output, and the servo alarm output on the motor driver side, the circuits recommended by the various motor manufacturers should be used.

Numbers in parentheses after the unit side indicate the pin number for the second axis.

The above wiring is for the line driver output type.

As of October 2008, this is the end-of-life (EOL) product.

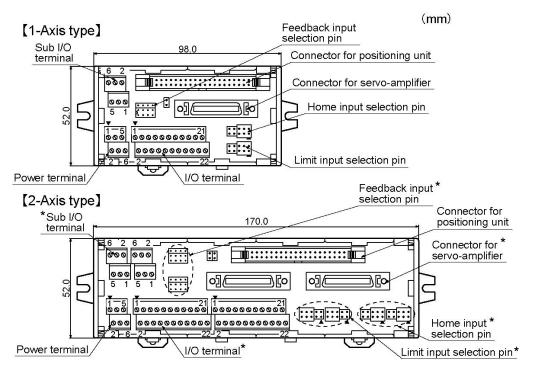
17.2.6 Oriental Motor UPK-W Series

Numbers in parentheses after the unit side indicate the pin number for the second axis.

17.2.7 Motor Driver I/F Terminal II

|--|

Product name		Product number
Motor Driver I/F Terminal II	1-axis type	AFP8503
	2-axis type	AFP8504


-Positioning unit which can be used

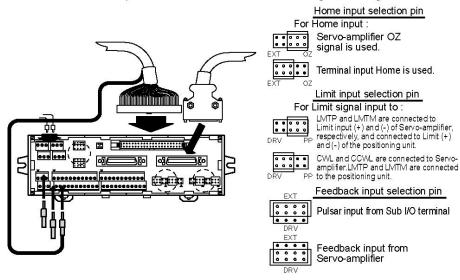
Product name		Product number
FP2 Positioning unit	2-axis type	AFP2434
Multhfunction type	4-axis type	AFP2435
FPSigma Positionin unit	1-axis type	AFPG432
-	2-axis type	AFPG433

-Related products

Product name		Product number
Cable for FP2 Positioning unit	FP2 Positioning unit 0.5m	
	1m	AFP85101
Cable for MINAS AII series	1m	AFP85131
	2m	AFP85132
Cable for MINAS S series	1m	AFP85141
	2m	AFP85142

-Parts and Dimension

The asterix (\rightarrow^*) below indicates the following:


AX1 and AX2; AX(3) and AX(4) which you can see at the PWB of the I/F terminal, both share the same connector slot at the FP2 positioning unit side. (for PP22 type and PP42 type)

When the user will use the 3 and 4 axis connection from the FP2 positioning unit, the AX(3) and AX(4) can be used for this.

Note: Number 3 and 4 are parenthesized at the I/F terminal.

-Connecting the wiring

Caution: Be sure the power is turned off while connecting the wiring.

-I/F terminal-after connecting the cable, pulse output A, pulse output B (of the line driver), and the deviation counter clear signals are joined together at this I/F terminal.

-It can be switched whether Home input is received from the servo-amplifier OZ signal (direct connection) or from the terminal input Home, using Home input selection pin. (See the figure above.)

-(a) and (b) below can be switched using the limit input selection pin. (See the figure above.) (a) : LMTP and LMTM signals of the I/O terminal are sent to the positioning unit and servo-amplifier simultaneously.

(b) : LMTP and LMTM signals are sent to the positioning unit and CWL and CCWL signals of the I/O terminal are sent to the servo-amplifier.

-It can be switched whether the pulse input of the positioning unit is sent to the PA/PB of the I/O terminal or to the encoder signal output, using the feedback input selection pin. (See the figure above.)

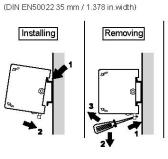
-Please connect the shielded cable terminal (cable type: AFP85100; AFP85101) to the FE terminal (at I/F terminal)

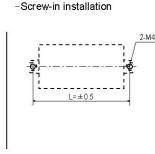
When FP2 and the MINAS-AIII(S) servo-amplifier does not function properly due to reasons of noise influence, then connect the shielded cable terminal (cable type: AFP85100; AFP85101) to the SD terminal (at I/F terminal).

%FE terminal (of the I/F terminal) - this is either connected to the F.E. pin of the FP2 positioning unit or to the FG pin of the CN I/F connector of the MINAS-AIII(S) servo-amplifier.

SD terminal (of the I/F terminal) - this is connected to the GND pin of the CN I/F connector of the MINAS-AIII(S) servo-amplifier.

Manual pulse genarator Sub I/O terminal PA+*▲ 6 5 PAж 4 PB+ PB- * 3 ZSP 2 ΓF COM+ FP2 Power terminal +24 VDC $\begin{array}{ll} \mbox{positioning unit} & \mbox{FP}\,\Sigma \\ \mbox{Multifunction type} & \mbox{positioning unit} \end{array}$ +24 VDC 1 н +24 VDC 2 PP21 GND 3 GND 141 Connect cable for SD 5 FP2 positioning 6 FE(FG) I/O terminal S-RDY+ 4 COM+ 2 ALM+ 3 t d^o COM+ 4 COIN+ 5 4 COM-6 BRKOFF+ 7 COM-8 MINAS AII and S series TLC 9 Servo-amplifier ZSG ж 101 0 INH 11 888888 2 DOG ж 12 -Cable for SRV-ON 13 7 MINAS AII -14 and S series CCWL 004 2 കി 151 7 GAIN 116 CWL 17 2 -0 DIV 18 5 A-CLR 6 5 LMT P * 19 2 20 2 TIM * LMT M * 21 7 -122 COM+ * : Signal for the positioning unit


-Terminal arrangement diagram(1 axis type)


-Pole terminal

Manufacture	Part No.	Si	ze	Tightening torque
Phoenix	AI 0.25-6BU	AWG#25-#22	0.18-0.33mm ²	
Contact Co.	AI 0.34-6TQ	AWG#24-#22	0.20-0.37mm ²	0.22-0.25 N∙m
	AI 0.5-6WH	AWG#22-#20	0.32-0.56mm ²	

-Insralling the I/F terminal

-DIN rail installation

	Туре	Part number	L(mm)
	1-axis type	AFP8503	106.0
14	2-axis type	AFP8504	178.0

Chapter 18

Sample Program

18.1 Sample Program

18.1.1 Positioning Program for 1 Axis

Unit configuration

An overview of a sample program

This sample program uses the absolute method.

When Over limit switch is ON, the status is to be the power being supplied.

The positioning (1) and (2) operations will be valid after home return.

1. When input X0 is ON, the table moves to the absolute position 10000. [Positioning (1)]

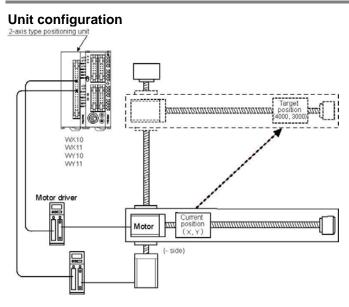
2. When input X1 is ON, the table moves to the absolute position 0. [Positioning (2)]

3. When input X2 is ON, a return to the home position begins. (If the near home input is not in the return direction, a Over limit input is detected, and the direction is reversed. After the near home input (ON/OFF) is detected, the return to the home position is begun again.)

I/O Allocation

I/O No.	Description	I/O No.	Description	
X100	Pulse output busy flag	R0	during home return operation	
X101	Positioning done flag	R1	Home return command pulse	
X108	Home return done flag	R8	Home return done pulse	
X0	Positioning(1) operation start	R9	Home return completed and stored in memory	
X1	Positioning(2) operation start	R10	during positioning (1) operation	
X2	Home Return start	R11	Positioning (1) operation command pulse	
X3	Forward JOG	R12	Positioning (1) completed and stored in memory	
X4	Reverse JOG	R13	Positioning (1) done pulse	
X5	Emergency stop	R20	during positioning (2) operation	
Y100	E point control start	R21	Positioning (2) operation command pulse	
Y102	Home return start	R22	Positioning (2) completed and stored in memory	
Y103	Forward JOG	R23	Positioning (2) done pulse	
Y104	Reverse JOG	R30	Forward JOG setting	
Y105	Forced stop	R31	Reverse JOG setting	

Reference:


The switch input status can be checked at the following flag. X106 Home input X107 Near home input X10B Over limit input (+) X10C Over limit input (-)

Program

ХЗ	_R30
	-(DF) Forward JOG setting
R30	—[F1DMV, H D1, DT0]
	F1 DMV , K 500 , DT 2
	F1 DMV , K 1000 , DT 4
	[F1 DMV, K 100, DT 6]
	[F151 WRT , K0 , DT0 , K8 , H 100]
X4	R31
	-(DF) Reverse JOG setting []
R31	[F1DMV, H D1, DT0]
-u	
	F1 DMV , K 500 , DT 2
	[F1 DMV , K 1000 , DT 4]
	[F1 DMV, K 100, DT 6]
	F151 WRT, K0, DT0, K8, H100]
R11	Y100
	E point control start
R21	
R1	Y102
	Home return start
X3	Y103
	Forward JOG start
X4	Y104
	Reverse JOG start
X5	Y105
-II-	Emergency stop, over run
	Line gency stop, over run -
	(ED)

18.1.2 Positioning for 2 Axes (Linear Interpolation Program)

An overview of a sample program

This sample program uses the absolute method.

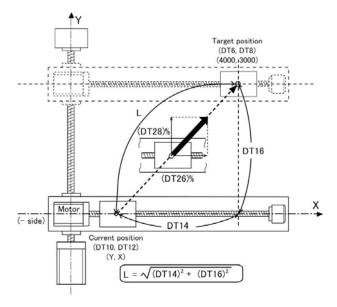
- 1. The current absolute position is read into the data table reads.
- 2. The distance from the current position to the target position (4000, 3000) is calculated.
- 3. The proportions of the X component and Y component included in the distance are calculated individually.
- 4. E point control is initiated simultaneously for the X and Y axes, the start up speed and target speed are output as the respective proportions, and linear interpolation is carried out.

Because an error occurs if a startup is applied to an axis for which the target speed is 0 pps, an internal flag is used and the startup conditions are specified.

Data	Linear component	X axis component	Y axis component
Target position (absolute)	(X, Y)	X*	Y*
Current position (absolute)	(x, y)	Х	у
Movement distance	$L = \sqrt{(X-x)^2+(Y-y)^2}$	Lx=X-x	Ly=Y-y
startup speed	VS*	$Vsx=Vs\times\frac{ X-x }{L}$	$Vsy=Vs\times\frac{ Y-y }{L}$
target speed	Vt*	$Vtx=Vt \times \frac{ X-x }{L}$	$Vty=Vt \times \frac{ Y-y }{L}$
Acceleration/deceleration time	Ac*	Acx=Ac	Acy=Ac

Items to be set for the program

For items marked with an asterisk (*), the user may specify any desired value. Other items are handled through operation in the sample program.

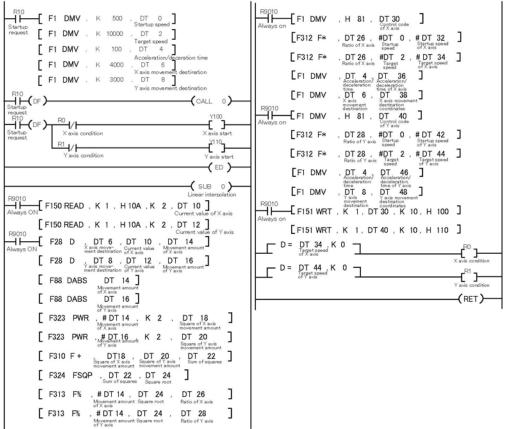

Reference:

Calculation of the linear movement distance

$$L$$

$$X$$

$$L^{2} = X^{2} + Y^{2} \rightarrow L = \sqrt{X^{2} + Y}$$



Allocation of data registers

ltem	Data No.	Description	Calculation formula
	DT0	startup speed	
		target speed	
		Acceleration/deceleration time	
area	DT6	Target position of X axis	
	DT8	Target position of Y axis	
	DT10	Current position of X axis	
	DT12	Current position of Y axis	
	DT14	Movement amount of X axis = absolute value of (target position of X axis – current position of X axis)	ABS(DT6 – DT10)
	DT16	Movement amount of Y axis = absolute value of (target position of Y axis - current position of Y axis)	ABS(DT8 – DT12)
	DT18	Movement amount of square of X axis	Square of (DT14)
	DT20	Movement amount of square of Y axis	Square of (DT16)
	DT22	Movement amount of square of X axis + movement amount of square of Y axis	DT18+DT20
Data	DT24	Linear movement amount	√DT22
register the program is	DT26	Movement amount of X axis/Linear movement amount	DT14/DT24
using	DT28	Movement amount of Y axis/Linear movement amount	DT16/DT24
	DT30	Control code of X axis	H1 <absolute></absolute>
	DT32	Startup speed of X axis component	DT0*DT26
	DT34	Target speed of X axis component	DT2*DT26
	DT36	Acceleration/deceleration time	DT4
	DT38	Target position of X axis	DT6
	DT40	Control code of Y axis	H1 <absolute></absolute>
	DT42	Startup speed of Y axis component	DT0*DT28
	DT44	Target speed of Y axis component	DT2*DT28
	DT46	Acceleration/deceleration time	DT4
	DT48	Target position of Y axis	DT8

18-7

Program

Reference:

The meaning of the "#" symbol in the program

The "#" symbol is specified when a real number operation instruction is used, to convert (integer data) to (real number data), or (real number data) to (integer data).

When Over limit switch (+) and Over limit switch(-) are not connected, change the limit input valid logic using the control code. The default setting is the input existing when the power is not supplied, that is, is the input existing without the Over limit switch connection.

Record of changes

Manual No.	Date	Description of changes
ARCT1F365E	SEPT., 2002	First edition
ARCT1F365E-1	NOV.,2003	Second edition (PDF Only) Add: 17.2.7 MoterDriver I/F Terminal Changes: Input terminal specification To correct an error
ARCT1F365E-2	AUG.2004	Third edition
ARCT1F365E-3	NOV.2008	Fourth edition - Change in Corporate name
ARCT1F365E-4	AUG.2011	Fifth edition - Change in Corporate name - Fixed Errors
ARCT1F365E-5	JUL.2013	Sixth edition - Change in Corporate name

Please contact

Panasonic Industrial Devices SUNX Co., Ltd.

Overseas Sales Division (Head Office): 2431-1 Ushiyama-cho, Kasugai-shi, Aichi, 486-0901, Japan
 Telephone: +81-568-33-7861
 Facsimile: +81-568-33-8591

panasonic.net/id/pidsx/global

About our sale network, please visit our website.